Exactly solvable time-dependent models of two interacting two-level systems


Abstract in English

Two coupled two-level systems placed under external time-dependent magnetic fields are modeled by a general Hamiltonian endowed with a symmetry that enables us to reduce the total dynamics into two independent two-dimensional sub-dynamics. Each of the sub-dynamics is shown to be brought into an exactly solvable form by appropriately engineering the magnetic fields and thus we obtain an exact time evolution of the compound system. Several physically relevant and interesting quantities are evaluated exactly to disclose intriguing phenomena in such a system.

Download