No Arabic abstract
In 2011, Rideau and Winskel introduced concurrent games and strategies as event structures, generalizing prior work on causal formulations of games. In this paper we give a detailed, self-contained and slightly-updated account of the results of Rideau and Winskel: a notion of pre-strategy based on event structures; a characterisation of those pre-strategies (deemed strategies) which are preserved by composition with a copycat strategy; and the construction of a bicategory of these strategies. Furthermore, we prove that the corresponding category has a compact closed structure, and hence forms the basis for the semantics of concurrent higher-order computation.
We consider $omega^n$-automatic structures which are relational structures whose domain and relations are accepted by automata reading ordinal words of length $omega^n$ for some integer $ngeq 1$. We show that all these structures are $omega$-tree-automatic structures presentable by Muller or Rabin tree automata. We prove that the isomorphism relation for $omega^2$-automatic (resp. $omega^n$-automatic for $n>2$) boolean algebras (respectively, partial orders, rings, commutative rings, non commutative rings, non commutative groups) is not determined by the axiomatic system ZFC. We infer from the proof of the above result that the isomorphism problem for $omega^n$-automatic boolean algebras, $n > 1$, (respectively, rings, commutative rings, non commutative rings, non commutative groups) is neither a $Sigma_2^1$-set nor a $Pi_2^1$-set. We obtain that there exist infinitely many $omega^n$-automatic, hence also $omega$-tree-automatic, atomless boolean algebras $B_n$, $ngeq 1$, which are pairwise isomorphic under the continuum hypothesis CH and pairwise non isomorphic under an alternate axiom AT, strengthening a result of [FT10].
An $omega$-tree-automatic structure is a relational structure whose domain and relations are accepted by Muller or Rabin tree automata. We investigate in this paper the isomorphism problem for $omega$-tree-automatic structures. We prove first that the isomorphism relation for $omega$-tree-automatic boolean algebras (respectively, partial orders, rings, commutative rings, non commutative rings, non commutative groups, nilpotent groups of class n >1) is not determined by the axiomatic system ZFC. Then we prove that the isomorphism problem for $omega$-tree-automatic boolean algebras (respectively, partial orders, rings, commutative rings, non commutative rings, non commutative groups, nilpotent groups of class n >1) is neither a $Sigma_2^1$-set nor a $Pi_2^1$-set.
This article extends the idea of solving parity games by strategy iteration to non-deterministic strategies: In a non-deterministic strategy a player restricts himself to some non-empty subset of possible actions at a given node, instead of limiting himself to exactly one action. We show that a strategy-improvement algorithm by by Bjoerklund, Sandberg, and Vorobyov can easily be adapted to the more general setting of non-deterministic strategies. Further, we show that applying the heuristic of all profitable switches leads to choosing a locally optimal successor strategy in the setting of non-deterministic strategies, thereby obtaining an easy proof of an algorithm by Schewe. In contrast to the algorithm by Bjoerklund et al., we present our algorithm directly for parity games which allows us to compare it to the algorithm by Jurdzinski and Voege: We show that the valuations used in both algorithm coincide on parity game arenas in which one player can surrender. Thus, our algorithm can also be seen as a generalization of the one by Jurdzinski and Voege to non-deterministic strategies. Finally, using non-deterministic strategies allows us to show that the number of improvement steps is bound from above by O(1.724^n). For strategy-improvement algorithms, this bound was previously only known to be attainable by using randomization.
This paper studies a stochastic robotic surveillance problem where a mobile robot moves randomly on a graph to capture a potential intruder that strategically attacks a location on the graph. The intruder is assumed to be omniscient: it knows the current location of the mobile agent and can learn the surveillance strategy. The goal for the mobile robot is to design a stochastic strategy so as to maximize the probability of capturing the intruder. We model the strategic interactions between the surveillance robot and the intruder as a Stackelberg game, and optimal and suboptimal Markov chain based surveillance strategies in star, complete and line graphs are studied. We first derive a universal upper bound on the capture probability, i.e., the performance limit for the surveillance agent. We show that this upper bound is tight in the complete graph and further provide suboptimality guarantees for a natural design. For the star and line graphs, we first characterize dominant strategies for the surveillance agent and the intruder. Then, we rigorously prove the optimal strategy for the surveillance agent.
We prove a number of results on the determinacy of $sigma$-projective sets of reals, i.e., those belonging to the smallest pointclass containing the open sets and closed under complements, countable unions, and projections. We first prove the equivalence between $sigma$-projective determinacy and the determinacy of certain classes of games of variable length ${<}omega^2$ (Theorem 2.4). We then give an elementary proof of the determinacy of $sigma$-projective sets from optimal large-cardinal hypotheses (Theorem 4.4). Finally, we show how to generalize the proof to obtain proofs of the determinacy of $sigma$-projective games of a given countable length and of games with payoff in the smallest $sigma$-algebra containing the projective sets, from corresponding assumptions (Theorems 5.1 and 5.4).