Do you want to publish a course? Click here

GAMA/WiggleZ: The 1.4GHz radio luminosity functions of high- and low-excitation radio galaxies and their redshift evolution to z=0.75

77   0   0.0 ( 0 )
 Added by Michael Pracy
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present radio Active Galactic Nuclei (AGN) luminosity functions over the redshift range 0.005 < z < 0.75. The sample from which the luminosity functions are constructed is an optical spectroscopic survey of radio galaxies, identified from matched Faint Images of the Radio Sky at Twenty-cm survey (FIRST) sources and Sloan Digital Sky Survey (SDSS) images.The radio AGN are separated into Low Excitation Radio Galaxies (LERGs) and High Excitation Radio Galaxies (HERGs) using the optical spectra. We derive radio luminosity functions for LERGs and HERGs separately in the three redshift bins (0.005 < z < 0.3, 0.3 < z < 0.5 and 0.5 < z <0.75). The radio luminosity functions can be well described by a double power-law. Assuming this double power-law shape the LERG population displays little or no evolution over this redshift range evolving as ~$(1+z)^{0.06}$ assuming pure density evolution or ~ $(1+z)^{0.46}$ assuming pure luminosity evolution. In contrast, the HERG population evolves more rapidly, best fitted by ~$(1+z)^{2.93}$ assuming a double power-law shape and pure density evolution. If a pure luminosity model is assumed the best fitting HERG evolution is parameterised by ~$(1+z)^{7.41}$. The characteristic break in the radio luminosity function occurs at a significantly higher power (~1 dex) for the HERG population in comparison to the LERGs. This is consistent with the two populations representing fundamentally different accretion modes.

rate research

Read More

341 - J. H. Y. Ching 2017
We study the environments of low- and high- excitation radio galaxies (LERGs and HERGs respectively) in the redshift range $0.01 < z < 0.4$, using a sample of 399 radio galaxies and environmental measurements from the Galaxy And Mass Assembly (GAMA) survey. In our analysis we use the fifth nearest neighbour density ($Sigma_{5}$) and the GAMA galaxy groups catalogue (G3Cv6) and construct control samples of galaxies matched in {update stellar mass and colour} to the radio-detected sample. We find that LERGs and HERGs exist in different environments and that this difference is dependent on radio luminosity. High-luminosity LERGs ($L_{rm NVSS} gtrsim 10^{24}$ W Hz$^{-1}$) lie in much denser environments than a matched radio-quiet control sample (about three times as dense, as measured by $Sigma_{5}$), and are more likely to be members of galaxy groups ($82^{+5}_{-7}$ percent of LERGs are in GAMA groups, compared to $58^{+3}_{-3}$ percent of the control sample). In contrast, the environments of the HERGs and lower luminosity LERGs are indistinguishable from that of a matched control sample. Our results imply that high-luminosity LERGs lie in more massive haloes than non-radio galaxies of similar stellar mass and colour, in agreement with earlier studies (Wake et al. 2008; Donoso et al. 2010). When we control for the preference of LERGs to be found in groups, both high- and low- luminosity LERGs are found in higher-mass haloes ($sim 0.2$ dex; at least 97 percent significant) than the non-radio control sample.
Young radio galaxies (YRGs) provide an ideal laboratory to explore the connection between accretion disk and radio jet thanks to their recent jet formation. We investigate the relationship between the emission-line properties, the black hole accretion rate, and the radio properties using a sample of 34 low-redshift (z < 0.4) YRGs. We classify YRGs as high-excitation galaxies (HEGs) and low-excitation galaxies (LEGs) based on the flux ratio of high-ionization to low-ionization emission lines. Using the H{alpha} luminosities as a proxy of accretion rate, we find that HEGs in YRGs have sim1 dex higher Eddington ratios than LEGs in YRGs, suggesting that HEGs have higher mass accretion rate or higher radiative efficiency than LEGs. In agreement with previous studies, we find that the luminosities of emission lines, in particular H{alpha}, are correlated with radio core luminosity, suggesting that accretion and young radio activities are fundamentally connected.
136 - P. Kharb 2016
We present detailed science cases that a large fraction of the Indian AGN community is interested in pursuing with the upcoming Square Kilometre Array (SKA). These interests range from understanding low luminosity active galactic nuclei in the nearby Universe to powerful radio galaxies at high redshifts. Important unresolved science questions in AGN physics are discussed. Ongoing low-frequency surveys with the SKA pathfinder telescope GMRT, are highlighted.
We present polarisation properties at $1.4,$GHz of two separate extragalactic source populations: passive quiescent galaxies and luminous quasar-like galaxies. We use data from the {it Wide-Field Infrared Survey Explorer} data to determine the host galaxy population of the polarised extragalactic radio sources. The quiescent galaxies have higher percentage polarisation, smaller radio linear size, and $1.4,$GHz luminosity of $6times10^{21}<L_{rm 1.4}<7times10^{25},$W Hz$^{-1}$, while the quasar-like galaxies have smaller percentage polarisation, larger radio linear size at radio wavelengths, and a $1.4,$GHz luminosity of $9times10^{23}<L_{rm 1.4}<7times10^{28},$W Hz$^{-1}$, suggesting that the environment of the quasar-like galaxies is responsible for the lower percentage polarisation. Our results confirm previous studies that found an inverse correlation between percentage polarisation and total flux density at $1.4,$GHz. We suggest that the population change between the polarised extragalactic radio sources is the origin of this inverse correlation and suggest a cosmic evolution of the space density of quiescent galaxies. Finally, we find that the extragalactic contributions to the rotation measures (RMs) of the nearby passive galaxies and the distant quasar-like galaxies are different. After accounting for the RM contributions by cosmological large-scale structure and intervening Mg,{II} absorbers we show that the distribution of intrinsic RMs of the distant quasar-like sources is at most four times as wide as the RM distribution of the nearby quiescent galaxies, if the distribution of intrinsic RMs of the WISE-Star sources itself is at least several rad m$^{-2}$ wide.
We present the Large Area Radio Galaxy Evolution Spectroscopic Survey (LARGESS), a spectroscopic catalogue of radio sources designed to include the full range of radio AGN populations out to redshift z = 0.8. The catalogue covers roughly 800 square degrees of sky, and provides optical identifications for 19,179 radio sources from the 1.4 GHz Faint Images of the Radio Sky at Twenty-cm (FIRST) survey down to an optical magnitude limit of i_mod < 20.5 in Sloan Digital Sky Survey (SDSS) images. Both galaxies and point-like objects are included, and no colour cuts are applied. In collaboration with the WiggleZ and Galaxy And Mass Assembly (GAMA) spectroscopic survey teams, we have obtained new spectra for over 5,000 objects in the LARGESS sample. Combining these new spectra with data from earlier surveys provides spectroscopic data for 12,329 radio sources in the survey area, of which 10,856 have reliable redshifts. 85% of the LARGESS spectroscopic sample are radio AGN (median redshift z = 0.44), and 15% are nearby star-forming galaxies (median z = 0.08). Low-excitation radio galaxies (LERGs) comprise the majority (83%) of LARGESS radio AGN at z < 0.8, with 12% being high-excitation radio galaxies (HERGs) and 5% radio-loud QSOs. Unlike the more homogeneous LERG and QSO sub-populations, HERGs are a heterogeneous class of objects with relatively blue optical colours and a wide dispersion in mid-infrared colours. This is consistent with a picture in which most HERGs are hosted by galaxies with recent or ongoing star formation as well as a classical accretion disk.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا