Do you want to publish a course? Click here

In situ Observation of Dark Current Emission in a High Gradient RF Photocathode Gun

64   0   0.0 ( 0 )
 Added by Jiahang Shao
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

Undesirable electron field emission (a.k.a. dark current) in high gradient RF photocathode guns deteriorates the quality of photoemission current and limits the operational gradient. To improve the understanding of dark current emission, a high-resolution (~100 um) dark current imaging experiment has been performed in an L-band photocathode gun operating at ~100 MV/m of surface gradient. Dark current from the cathode has been observed to be dominated by several separated strong emitters. The field enhancement factor, beta, of selected regions on the cathode has been measured. The post scanning electron microscopy (SEM) and white light interferometer (WLI) surface examinations reveal the origins of ~75% strong emitters overlap with the spots where rf breakdown have occurred.



rate research

Read More

High-gradient CW photo-injectors operating at high accelerating gradients promise to revolutionize many sciences and applications. They can establish the basis for super-bright monochromatic X-ray free-electron lasers, super-bright hadron beams, nuclear- waste transmutation or a new generation of microchip production. In this letter we report on our operation of a superconducting RF electron gun with a record-high accelerating gradient at the CsK2Sb photocathode (i.e. ~ 20 MV/m) generating a record-high bunch charge (i.e., 3 nC). We briefly describe the system and then detail our experimental results. This achievement opens new era in generating high-power electron beams with a very high brightness.
131 - J.P. Edelen 2017
Recent work at Fermilab in collaboration with the Advanced Photon Source and members of other national labs, designed an experiment to study the relationship between the RF repetition rate and the average current per RF pulse. While existing models anticipate a direct relationship between these two parameters we observed an inverse relationship. We believe this is a result of damage to the barium coating on the cathode surface caused by a change in back-bombardment power that is unaccounted for in the existing theories. These observations shed new light on the challenges and fundamental limitations associated with scaling an un-gated thermionic cathode RF gun to high average current machines.
211 - O. Mohsen , I. Gonin , R. Kephart 2018
High-power electron beams are sought-after tools in support to a wide array of societal applications. This paper investigates the production of high-power electron beams by combining a high-current field-emission electron source to a superconducting radio-frequency (SRF) cavity. We especially carry out beam-dynamics simulations that demonstrate the viability of the scheme to form $sim$ 300 kW average-power electron beam using a 1+1/2-cell SRF gun.
CW photoinjectors operating at high accelerating gradients promise to revolutionize many areas of science and applications. They can establish the basis for a new generation of monochromatic X-ray free electron lasers, high brightness hadron beams, or a new generation of microchip production. In this letter we report on the record-performing superconducting RF electron gun with $textrm{CsK}_{2}textrm{Sb}$ photocathode. The gun is generating high charge electron bunches (up to 10 nC/bunch) and low transverse emittances, while operating for months with a single photocathode. This achievement opens a new era in generating high-power beams with a very high average brightness.
103 - J. E. Clendenin 2002
Future colliders that require low-emittance highly-polarized electron beams are the main motivation for developing a polarized rf gun. However there are both technical and physics issues in generating highly polarized electron beams using rf guns that remain to be resolved. The PWT design offers promising features that may facilitate solutions to technical problems such as field emission and poor vacuum. Physics issues such as emission time now seem to be satisfactorily resolved. Other issues, such as the effect of magnetic fields at the cathode-both those associated with the rf field and those imposed by schemes to produce flat beams-are still open questions. Potential solution of remaining problems will be discussed in the context of the PWT design.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا