Leggett--Garg inequality violations with a large ensemble of qubits


Abstract in English

We investigate how discrete internal degrees of freedom in a quasi-macroscopic system affect the violation of the Leggett--Garg inequality, a test of macroscopic-realism based on temporal correlation functions. As a specific example, we focus on an ensemble of qubits subject to collective and individual noise. This generic model can describe a range of physical systems, including atoms in cavities, electron or nuclear spins in NV centers in diamond, erbium in Y$_2$SiO$_5$, bismuth impurities in silicon, or arrays of superconducting circuits, to indicate but a few. Such large ensembles are potentially more macroscopic than other systems that have been used so far for testing the Leggett--Garg inequality, and open a route toward probing the boundaries of quantum mechanics at macroscopic scales. We find that, because of the non-trivial internal structure of such an ensemble, the behavior of different measurement schemes, under the influence of noise, can be surprising. We discuss which measurement schemes are optimal for flux qubits and NV centers, and some of the technological constraints and difficulties for observing such violations with present-day experiments.

Download