Optical, transport and magnetic properties of new compound CeCd3P3


Abstract in English

We have found that CeCd$_{3}$P$_{3}$ crystallizes into a hexagonal ScAl$_{3}$C$_{3}$-type structure. The optical, transport and magnetic properties of CeCd$_{3}$P$_{3}$ were investigated by measuring the diffuse reflectance, electrical resistivity and magnetization. CeCd$_{3}$P$_{3}$ is a semiconductor with the fundamental band gap of approximately 0.75 eV. The 4$f$ electrons of Ce$^{3+}$ ions are well localized but do not show long range order down to 0.48 K, presumably due to the geometrical frustration of Ce atoms. The magnetic ordering temperature is possibly lower than that of isostructural CeZn$_{3}$P$_{3}$ (0.75 K). Because several $f$-electron compounds with the ScAl$_{3}$C$_{3}$-type structure are quantum spin systems, CeCd$_{3}$P$_{3}$ may be a candidate of quantum spin liquid. On the other hand, the relatively large band gap compared to approximately 0.4 eV in CeZn$_{3}$P$_{3}$, would not be intimate with the observation of photoinduced Kondo effect, providing a potentially new range of applications of devices based on the Kondo effect.

Download