We introduce $mathrm{Nd_{3}Sb_{3}Mg_{2}O_{14}}$ with ideal kagome lattices of neodymium ions in ABC stacking. Thermodynamic measurements show a Curie-Weiss temperature of $Theta_{CW}=-0.12~$K, a Nd$^{3+}$ spin-1/2 Kramers doublet ground state, and a second order phase transition at $T_N=0.56(2)~$K. Neutron scattering reveals non-coplanar scalar chiral ${bf k} =0$ magnetic order with a correlation length exceeding 400 AA = 55 $a$ and an ordered moment of $1.79(5)~mu_B$. This order includes a canted ferromagnetic component perpendicular to the kagome planes favored by Dzyaloshinskii-Moriya interactions.
The topological quantum spin liquids (SL) and the nature of quantum phase transitions between them have attracted intensive attentions for the past twenty years. The extended kagome spin-1/2 antiferromagnet emerges as the primary candidate for hosting both time reversal symmetry (TRS) preserving and TRS breaking SLs based on density matrix renormalization group simulations. To uncover the nature of the novel quantum phase transition between the SL states, we study a minimum XY model with the nearest neighbor (NN) ($J_{xy}$), the second and third NN couplings ($J_{2xy}=J_{3xy}=J_{xy}$). We identify the TRS broken chiral SL (CSL) with the turn on of a small perturbation $J_{xy}sim 0.06 J_{xy}$, which is fully characterized by the fractionally quantized topological Chern number and the conformal edge spectrum as the $ u=1/2$ fractional quantum Hall state. On the other hand, the NN XY model ($J_{xy}=0$) is shown to be a critical SL state adjacent to the CSL, characterized by the gapless spin singlet excitations and also vanishing small spin triplet excitations. The quantum phase transition from the CSL to the gapless critical SL is driven by the collapsing of the neutral (spin singlet) excitation gap. By following the evolution of entanglement spectrum, we find that the transition takes place through the coupling of the edge states with opposite chiralities, which merge into the bulk and become gapless neutral excitations. The effect of the NN spin-$z$ coupling $J_z$ is also studied, which leads to a quantum phase diagram with an extended regime for the gapless SL.
We study the nearest neighbor $XXZ$ Heisenberg quantum antiferromagnet on the kagome lattice. Here we consider the effects of several perturbations: a) a chirality term, b) a Dzyaloshinski-Moriya term, and c) a ring-exchange type term on the bowties of the kagome lattice, and inquire if they can suppport chiral spin liquids as ground states. The method used to study these Hamiltonians is a flux attachment transformation that maps the spins on the lattice to fermions coupled to a Chern-Simons gauge field on the kagome lattice. This transformation requires us to consistently define a Chern-Simons term on the kagome lattice. We find that the chirality term leads to a chiral spin liquid even in the absence of an uniform magnetic field, with an effective spin Hall conductance of $sxy = frac{1}{2}$ in the regime of $XY$ anisotropy. The Dzyaloshinkii-Moriya term also leads a similar chiral spin liquid but only when this term is not too strong. An external magnetic field also has the possibility of giving rise to additional plateaus which also behave like chiral spin liquids in the $XY$ regime. Finally, we consider the effects of a ring-exchange term and find that, provided its coupling constant is large enough, it may trigger a phase transition into a chiral spin liquid by the spontaneous breaking of time-reversal invariance.
We believe that a necessary first step in understanding the ground state properties of the spin-${scriptstylefrac{1}{2}}$ kagome Heisenberg antiferromagnet is a better understanding of this models very large number of low energy singlet states. A description of the low energy states that is both accurate and amenable for numerical work may ultimately prove to have greater value than knowing only what these properties are, in particular when these turn on the delicate balance of many small energies. We demonstrate how this program would be implemented using the basis of spin-singlet dimerized states, though other bases that have been proposed may serve the same purpose. The quality of a basis is evaluated by its participation in all the low energy singlets, not just the ground state. From an experimental perspective, and again in light of the small energy scales involved, methods that can deliver all the low energy states promise more robust predictions than methods that only refine a fraction of these states.
We present present a quantitative experimental investigation of the scalar chiral magnetic order with in $rm{Nd_3Sb_3Mg_2O_{14}}$. Static magnetization reveals a net ferromagnetic ground state, and inelastic neutron scattering from the hyperfine coupled nuclear spin reveals a local ordered moment of 1.76(6) $mu_B$, just 61(2)% of the saturated moment size. The experiments exclude static disorder as the source of the reduced moment. A 38(1) $mu$eV gap in the magnetic excitation spectrum inferred from heat capacity rules out thermal fluctuations and suggests a multipolar explanation for the moment reduction. We compare $rm{Nd_3Sb_3Mg_2O_{14}}$ to Nd pyrochlores and show that it is close to a moment fragmented state.
We study $S=1$ spin liquid states on the kagome lattice constructed by Gutzwiller-projected $p_x+ip_y$ superconductors. We show that the obtained spin liquids are either non-Abelian or Abelian topological phases, depending on the topology of the fermionic mean-field state. By calculating the modular matrices $S$ and $T$, we confirm that projected topological superconductors are non-Abelian chiral spin liquid (NACSL). The chiral central charge and the spin Hall conductance we obtained agree very well with the $SO(3)_1$ (or, equivalently, $SU(2)_2$) field theory predictions. We propose a local Hamiltonian which may stabilize the NACSL. From a variational study we observe a topological phase transition from the NACSL to the $Z_2$ Abelian spin liquid.