Tuning emergent magnetism in a Hunds impurity


Abstract in English

The recently proposed theoretical concept of a Hunds metal is regarded as a key to explain the exotic magnetic and electronic behavior occuring in the strongly correlated electron systems of multiorbital metallic materials. However, a tuning of the abundance of parameters, that determine these systems, is experimentally challenging. Here, we investigate the smallest possible realization of a Hunds metal, a Hunds impurity, realized by a single magnetic impurity strongly hybridized to a metallic substrate. We experimentally control all relevant parameters including magnetic anisotropy and hybridization by hydrogenation with the tip of a scanning tunneling microscope and thereby tune it through a regime from emergent magnetic moments into a multi-orbital Kondo state. Our comparison of the measured temperature and magnetic field dependent spectral functions to advanced many-body theories will give relevant input for their application to non-Fermi liquid transport, complex magnetic order, or unconventional superconductivity.

Download