Do you want to publish a course? Click here

Magneto-optical absorption in semiconducting spherical quantum dots: Influence of the dot-size, confining potential, and magnetic field

138   0   0.0 ( 0 )
 Added by Manvir Kushwaha
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

Here we embark on a thorough investigation of the magneto-optical absorption in semiconducting {em spherical} quantum dots characterized by a confining harmonic potential and an applied magnetic field in the symmetric gauge. This is done within the framework of Bohm-Pines random-phase approximation that enables us to derive and discuss the full Dyson equation that takes proper account of the Coulomb interactions. As an application of our theoretical strategy, we compute various single-particle and many-particle phenomena such as the Fock-Darwin spectrum; Fermi energy; magneto-optical transitions; probability distribution; and the magneto-optical absorption in the quantum dots. It is observed that the role of an applied magnetic field on the absorption spectrum is comparable to that of a confining potential. Increasing (decreasing) the strength of the magnetic field or the confining potential is found to be analogous to shrinking (expanding) the size of the quantum dots: resulting into a blue (red) shift in the absorption spectrum. The Fermi energy diminishes with both increasing magnetic-field and dot-size; and exhibits saw-tooth-like oscillations at large values of field or dot-size. Unlike laterally confined quantum dots, both (upper and lower) magneto-optical transitions survive even in the extreme instances. However, the intra-Landau level transitions are seen to be forbidden. The spherical quantum dots have an edge over the strictly two-dimensional quantum dots in that the additional (magnetic) quantum number makes the physics richer (but complex). A deeper grasp of the Coulomb blockade, quantum coherence, and entanglement can lead to a better insight into promising applications involving lasers, detectors, storage devices, and quantum computing.



rate research

Read More

83 - Manvir S. Kushwaha 2016
We embark on investigating the magneto-optical absorption in {em spherical} quantum dots {em completely} confined by a harmonic potential and exposed to an applied magnetic field in the symmetric gauge. This is done within the framework of Bohm-Pines RPA that enables us to derive and discuss the full Dyson equation that takes proper account of the Coulomb interactions. Intensifying the confinement or magnetic field and reducing the dot-size yields a blue-shift in the absorption peaks. However, the size effects are seen to be predominant in this role. The magnetic field tends to maximize the localization of the particle, but leaves the peak position of the radial distribution intact. The intra-Landau level transitions are forbidden.
68 - Rui Li , Zhi-Hai Liu , Yidong Wu 2017
For a nanowire quantum dot with the confining potential modeled by both the infinite and the finite square wells, we obtain exactly the energy spectrum and the wave functions in the strong spin-orbit coupling regime. We find that regardless of how small the well height is, there are at least two bound states in the finite square well: one has the $sigma^{x}mathcal{P}=-1$ symmetry and the other has the $sigma^{x}mathcal{P}=1$ symmetry. When the well height is slowly tuned from large to small, the position of the maximal probability density of the first excited state moves from the center to $x e0$, while the position of the maximal probability density of the ground state is always at the center. A strong enhancement of the spin-orbit effect is demonstrated by tuning the well height. In particular, there exists a critical height $V^{c}_{0}$, at which the spin-orbit effect is enhanced to maximal.
A microscopic theory is used to study the optical properties of semiconductor quantum dots. The dephasing of a coherent excitation and line-shifts of the interband transitions due to carrier-carrier Coulomb interaction and carrier-phonon interaction are determined from a quantum kinetic treatment of correlation processes. We investigate the density dependence of both mechanisms and clarify the importance of various dephasing channels involving the localized and delocalized states of the system.
We show that through the resonant optical excitation of spin-polarized excitons into CdMnTe magnetic quantum dots, we can induce a macroscopic magnetization of the Mn impurities. We observe very broad (4 meV linewidth) emission lines of single dots, which are consistent with the formation of strongly confined exciton magnetic polarons. Therefore we attribute the optically induced magnetization of the magnetic dots results to the formation of spin-polarized exciton magnetic polarons. We find that the photo-induced magnetization of magnetic polarons is weaker for larger dots which emit at lower energies within the QD distribution. We also show that the photo-induced magnetization is stronger for quantum dots with lower Mn concentration, which we ascribe to weaker Mn-Mn interaction between the nearest neighbors within the dots. Due to particular stability of the exciton magnetic polarons in QDs, where the localization of the electrons and holes is comparable to the magnetic exchange interaction, this optically induced spin alignment persists to temperatures as high as 160 K.
We conduct a combined experimental and theoretical study of the quantum-confined Stark effect in GaAs/AlGaAs quantum dots obtained with the local droplet etching method. In the experiment, we probe the permanent electric dipole and polarizability of neutral and positively charged excitons weakly confined in GaAs quantum dots by measuring their light emission under the influence of a variable electric field applied along the growth direction. Calculations based on the configuration-interaction method show excellent quantitative agreement with the experiment and allow us to elucidate the role of Coulomb interactions among the confined particles and -- even more importantly -- of electronic correlation effects on the Stark shifts. Moreover, we show how the electric field alters properties such as built-in dipole, binding energy, and heavy-light hole mixing of multiparticle complexes in weakly confining systems, underlining the deficiencies of commonly used models for the quantum-confined Stark effect.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا