Do you want to publish a course? Click here

Modeling the Performance of the LSST in Surveying the Near-Earth Object Population

105   0   0.0 ( 0 )
 Added by Tommy Grav
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have performed a detailed survey simulation of the LSST performance with regards to near-Earth objects (NEOs) using the projects current baseline cadence. The survey shows that if the project is able to reliably generate linked sets of positions and times (a so-called tracklet) using two detections of a given object per night and can link these tracklets into a track with a minimum of 3 tracklets covering more than a ~12 day length-of-arc, they would be able to discover 62% of the potentially hazardous asteroids (PHAs) larger than 140 m in its projected 10 year survey lifetime. This completeness would be reduced to 58% if the project is unable to implement a pipeline using the two detection cadence and has to adopt the four detection cadence more commonly used by existing NEO surveys. When including the estimated performance from the current operating surveys, assuming these would continue running until the start of LSST and perhaps beyond, the completeness fraction for PHAs larger than 140m would be 73% for the baseline cadence and 71% for the four detection cadence. This result is a lower than the estimate of Ivezic et al. (2007,2014); however it is comparable to that of Jones et al. (2016) who show completeness ~70$%. We also show that the traditional method of using absolute magnitude H < 22 mag as a proxy for the population with diameters larger than 140m results in completeness values that are too high by ~5%. Our simulation makes use of the most recent models of the physical and orbital properties of the NEO populations, as well as simulated cadences and telescope performance estimates provided by LSST. We further show that while neither LSST nor a space-based IR platform like NEOCam individually can complete the survey for 140m diameter NEOs, the combination of these systems can achieve that goal after a decade of observation.

rate research

Read More

We report on our search for genetically related asteroids amongst the near-Earth object (NEO) population - families of NEOs akin to the well known main belt asteroid families. We used the technique proposed by Fu et al. (2005) supplemented with a detailed analysis of the statistical significance of the detected clusters. Their significance was assessed by comparison to identical searches performed on 1,000 fuzzy-real NEO orbit distribution models that we developed for this purpose. The family-free fuzzy-real NEO models maintain both the micro and macro distribution of 5 orbital elements (ignoring the mean anomaly). Three clusters were identified that contain four or more NEOs but none of them are statistically significant at geq 3{sigma}. The most statistically significant cluster at the sim 2{sigma} level contains 4 objects with H < 20 and all members have long observational arcs and concomitant good orbital elements. Despite the low statistical significance we performed several other tests on the cluster to determine if it is likely a genetic family. The tests included examining the clusters taxonomy, size-frequency distribution, consistency with a family-forming event during tidal disruption in a close approach to Mars, and whether it is detectable in a proper element cluster search. None of these tests exclude the possibility that the cluster is a family but neither do they confirm the hypothesis. We conclude that we have not identified any NEO families.
We perform a search for dormant comets, asteroidal objects of cometary origin, in the near-Earth asteroid (NEA) population based on dynamical and physical considerations. Our study is based on albedos derived within the ExploreNEOs program and is extended by adding data from NEOWISE and the Akari asteroid catalog. We use a statistical approach to identify asteroids on orbits that resemble those of short-period near-Earth comets using the Tisserand parameter with respect to Jupiter, the aphelion distance, and the minimum orbital intersection distance with respect to Jupiter. From the sample of NEAs on comet-like orbits, we select those with a geometric albedo $p_V leq 0.064$ as dormant comet candidates, and find that only $sim$50% of NEAs on comet-like orbits also have comet-like albedos. We identify a total of 23 NEAs from our sample that are likely to be dormant short-period near-Earth comets and, based on a de-biasing procedure applied to the cryogenic NEOWISE survey, estimate both magnitude-limited and size-limited fractions of the NEA population that are dormant short-period comets. We find that 0.3-3.3% of the NEA population with $H leq 21$, and $9^{+2}_{-5}$% of the population with diameters $d geq 1$ km, are dormant short-period near-Earth comets.
363 - Theodore Kareta 2018
(3200) Phaethon is a compelling object as it has an asteroidal appearance and spectrum, produces a weak dust tail during perihelion at just 0.14 AU, and is the parent body of the Geminid Meteor Shower. A better understanding of the physical properties of Phaethon is needed to understand the nature of its current and previous activity, relationship to potential source populations, and to plan for the upcoming flyby of the DESTINY+ spacecraft of Phaethon in the 2020s. We performed rotationally-resolved spectroscopy of Phaethon at visible and near-infrared wavelengths (0.4-2.5 microns) in 2007 and 2017, respectively, to better understand its surface properties. The visible and near-infrared observations both spanned nearly a full rotation or more and were under similar observing geometries, covering the whole surface with the exception of the north pole. The visible wavelengths show blue slopes with only minor slope variations and no absorption features. The NIR data is minimally varying and concave upwards, from very blue to blue-neutral with increasing wavelength. We fit the short-wavelength tail of Phaethons thermal emission and retrieve an average visible albedo of pv = 0.08 +/- 0.01, which is lower than previous measurements but plausible in light of the recent larger radar-measured diameter of Phaethon. We retrieve an average infrared beaming parameter of Phaethon of eta = 1.70 +/- 0.05, which is similar to previous results. We discuss the implications of Phaethons visible and near-infrared spectrum as well as the lower albedo on its origin, source population, and evolutionary history.
The cryogenic WISE mission in 2010 was extremely sensitive to asteroids and not biased against detecting dark objects. The albedos of 428 Near Earth Asteroids (NEAs) observed by WISE during its fully cryogenic mission can be fit quite well by a 3 parameter function that is the sum of two Rayleigh distributions. The Rayleigh distribution is zero for negative values, and follows $f(x) = x exp[-x^2/(2sigma^2)]/sigma^2$ for positive x. The peak value is at x=sigma, so the position and width are tied together. The three parameters are the fraction of the objects in the dark population, the position of the dark peak, and the position of the brighter peak. We find that 25.3% of the NEAs observed by WISE are in a very dark population peaking at $p_V = 0.03$, while the other 74.7% of the NEAs seen by WISE are in a moderately dark population peaking at $p_V = 0.168$. A consequence of this bimodal distribution is that the Congressional mandate to find 90% of all NEAs larger than 140 m diameter cannot be satisfied by surveying to H=22 mag, since a 140 m diameter asteroid at the very dark peak has H=23.7 mag, and more than 10% of NEAs are darker than p_V = 0.03.
102 - Y. G. Kwon , M. Ishiguro , J. Kwon 2019
Aims. We aim to constrain the size and porosity of ejected dust particles from comet 252P/LINEAR and their evolution near the perihelion via near-infrared multiband polarimetry. A close approach of the comet to the Earth in March 2016 (~0.036 au) provided a rare opportunity for the sampling of the comet with a high spatial resolution. Methods. We made NIR JHKS bands polarimetric observations of the comet for 12 days near perihelion, interspersed between broadband optical imaging observations over four months. In addition, dynamical simulation of the comet was performed 1000 yr backward in time. Results. We detected two discontinuous brightness enhancements. Before the first enhancement, the NIR polarization degrees were far lower than those of ordinary comets at a given phase angle. Soon after the activation, however, they increased by ~13 % at most, showing unusual blue polarimetric color over the J and H bands (-2.55 % / um on average) and bluing of both J-H and H-Ks dust color. Throughout the event, the polarization vector was marginally aligned perpendicular to the scattering plane. The subsequent postperihelion reactivation of the comet lasted for approximately 1.5 months, with a factor of ~30 times pre-activation dust mass-loss rates in the Rc band. Conclusions. The marked increase in the polarization degree with blue NIR polarimetric color is reminiscent of the behaviors of a fragmenting comet D/1999 S4 (LINEAR). The most plausible scenario for the observed polarimetric properties of 252P/LINEAR would be an ejection of predominantly large, compact dust particles from the desiccated surface layer. We conjecture that the more intense solar heating that the comet has received in the near-Earth orbit would cause the paucity of small, fluffy dust particles around the nucleus of the comet.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا