No Arabic abstract
Every society has a story rooted in its most ancient traditions, of how the earth and sky originated. Most of these stories attribute the origin of all things to a Creator - whether God, Element or Idea. We first recall that in the Western world all discussions of the origin of the world were dominated until the 18th century by the story of Genesis, which describes the Creation as an ordered process that took seven days. Then we show how the development of mechanistic theories in the 18th century meant that the idea of an organized Creation gave way to the concept of evolution, helped by the fact that in the 19th century astrophysicists discovered that stars had their origin in clouds of gas. We conclude with Big bang theory, conceived at the beginning of the 20th century, that was subsequently developed into a more or less complete account of the history of the cosmos, from the supposed birth of space, time and matter out of the quantum vacuum until the emergence of life (at least on our planet Earth, and much probably elsewhere) and beyond.
Continuum and HI surveys with the Square Kilometre Array (SKA) will allow us to probe some of the most fundamental assumptions of modern cosmology, including the Cosmological Principle. SKA all-sky surveys will map an enormous slice of space-time and reveal cosmology at superhorizon scales and redshifts of order unity. We illustrate the potential of these surveys and discuss the prospects to measure the cosmic radio dipole at high fidelity. We outline several potentially transformational tests of cosmology to be carried out by means of SKA all-sky surveys.
In recent years the possibility of measuring the temporal change of radial and transverse position of sources in the sky in real time have become conceivable thanks to the thoroughly improved technique applied to new astrometric and spectroscopic experiments, leading to the research domain we call Real-time cosmology. We review for the first time great part of the work done in this field, analysing both the theoretical framework and some endeavor to foresee the observational strategies and their capability to constrain models. We firstly focus on real time measurements of the overall redshift drift and angular separation shift in distant source, able to trace background cosmic expansion and large scale anisotropy, respectively. We then examine the possibility of employing the same kind of observations to probe peculiar and proper acceleration in clustered systems and therefore the gravitational potential. The last two sections are devoted to the short time future change of the cosmic microwave background, as well as to the temporal shift of the temperature anisotropy power spectrum and maps. We conclude revisiting in this context the effort made to forecast the power of upcoming experiments like CODEX, GAIA and PLANCK in providing these new observational tools.
According to the algebraic approach to spacetime, a thoroughgoing dynamicism, physical fields exist without an underlying manifold. This view is usually implemented by postulating an algebraic structure (e.g., commutative ring) of scalar-valued functions, which can be interpreted as representing a scalar field, and deriving other structures from it. In this work, we point out that this leads to the unjustified primacy of an undetermined scalar field. Instead, we propose to consider algebraic structures in which all (and only) physical fields are primitive. We explain how the theory of emph{natural operations} in differential geometry---the modern formalism behind classifying diffeomorphism-invariant constructions---can be used to obtain concrete implementations of this idea for any given collection of fields. For concrete examples, we illustrate how our approach applies to a number of particular physical fields, including electrodynamics coupled to a Weyl spinor.
Cosmological boundary conditions for particles and fields are often discussed as a Cauchy problem, in which configurations and conjugate momenta are specified on an initial time slice. But this is not the only way to specify boundary conditions, and indeed in action-principle formulations we often specify configurations at two times and consider trajectories joining them. Here, we consider a classical system of particles interacting with short range two body interactions, with boundary conditions on the particles positions for an initial and a final time. For a large number of particles that are randomly arranged into a dilute gas, we find that a typical system trajectory will spontaneously collapse into a small region of space, close to the maximum density that is obtainable, before expanding out again. If generalizable, this has important implications for the cosmological arrow of time, potentially allowing a scenario in which both boundary conditions are generic and also a low-entropy state initial state of the universe naturally occurs.
Primordial nucleosynthesis remains as one of the pillars of modern cosmology. It is the testing ground upon which many cosmological models must ultimately rest. It is our only probe of the universe during the important radiation-dominated epoch in the first few minutes of cosmic expansion. This chapter reviews the basic equations of space-time, cosmology, and big bang nucleosynthesis. We also summarize the current state of observational constraints on primordial abundances along with the key nuclear reactions and their uncertainties. We summarize which nuclear measurements are most crucial during the big bang. We also review various cosmological models and their constraints. In particular, we analyze the constraints that big bang nucleosynthesis places upon the possible time variation of fundamental constants, along with constraints on the nature and origin of dark matter and dark energy, long-lived supersymmetric particles, gravity waves, and the primordial magnetic field.