Impurity-Induced Antiferromagnetic Domains in the Periodic Anderson Model


Abstract in English

A central feature of the Periodic Anderson Model is the competition between antiferromagnetism, mediated by the Ruderman-Kittel-Kasuya-Yosida interaction at small conduction electron-local electron hybridization $V$, and singlet formation at large $V$. At zero temperature, and in dimension $d>1$, these two phases are separated by a quantum critical point $V_c$. We use Quantum Monte Carlo simulations to explore the effect of impurities which have a local hybridization $V_{*} < V_c$ in the AF regime which are embedded in a bulk singlet phase with $V > V_c$. We measure the suppression of singlet correlations and the antiferromagnetic correlations which form around the impurity, as well as the size of the resulting domain. Our calculations agree qualitatively with NMR measurements in CeCoIn$_{5-x}$Cd$_x$.

Download