Do you want to publish a course? Click here

O$_2$ adsorption trends on small supported PtNi clusters

66   0   0.0 ( 0 )
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a systematic analysis of molecular oxygen (O$_2$) adsorption trends on bimetallic PtNi clusters and their monometallic counterparts supported on MgO(100), by means of periodic DFT calculations for sizes between 25 up to 58 atoms. O$_2$ adsorption was studied on a variety of inequivalent sites for different structural motifs, such as truncated octahedral (TO), cuboctahedral (CO), icosahedral (Ih) and decahedral (Dh) geometries. We found that O$_2$ prefers to bind on top of two metal atoms, parallel to the cluster, with an average chemisorption energy of 1.09 eV (PtNi), 1.07 eV (Pt) and 2.09 eV (Ni), respectively. The largest adsorption energy values are found to be along the edges between two neighbouring (111)/(111) and (111)/(100) facets; while FCC and HCP sites located on the (111) facets may show a chemisorption value lower 0.3 eV where often fast O$_2$ dissociation easily occurs. Our results show that, even though it is difficult to disentangle the geometrical and electronic effects on the oxygen molecule adsorption, there is a strong correlation between the calculated general coordination number (GCN) and the chemisorp- tion map. Finally, the inclusion of dispersion corrections (DFT-D) leads to an overall increase on the calculated adsorption energy values but with a negligible alteration on the general O$_2$ adsorption trends.



rate research

Read More

Diffusion Monte Carlo (DMC) calculations were performed for an accurate description of the nature of the O$_2$ adsorption on a single layer graphene. We investigated the stable orientation of O$_2$ at a specific adsorption site as well as its equilibrium adsorption energy. At equilibrium adsorption distances, an O$_2$ molecule was found to prefer a horizontal orientation, where the O-O bond is parallel to the graphene surface, to the vertical orientation. However, the vertical orientation is favored at the O$_2$-graphene distances shorter than the equilibrium distance, which could be understood by the steric repulsion between O and C atoms. Contrary to previous DFT calculations, our DMC calculations show that the midpoint of a C-C bond (a bridge site) is energetically preferred for the O$_2$ adsorption to a center of a hexagonal ring (a hollow site). The lowest DMC adsorption energy was found at an intermediate point between a hollow and a bridge site, where the O$_2$ adsorption energy was estimated to be -0.142(4) eV that was in very good agreement with the recently-reported experimental value. Finally, we have found that O$_2$ is very diffusive on the surface of graphene with the diffusion barrier along a bridge-hollow-bridge path being as small as ~ 11 meV.
We have studied the adsorption of NO on small Rh clusters, containing one to five atoms, using density functional theory in both spin-polarized and non-spin-polarized forms. We find that NO bonds more strongly to Rh clusters than it does to Rh(100) or Rh(111); however, it also quenches the magnetism of the clusters. This (local) effect results in reducing the magnitude of the adsorption energy, and also washes out the clear size-dependent trend observed in the non-magnetic case. Our results illustrate the competition present between the tendencies to bond and to magnetize, in small clusters.
Based on first-principles calculations, we show that the maximum reachable concentration $x$ in the (Ga$_{1-x}$In$_x$)$_2$O$_3$ alloy in the low-$x$ regime (i.e. In solubility in $beta$-Ga$_2$O$_3$) is around 10%. We then calculate the band alignment at the (100) interface between $beta$-Ga$_2$O$_3$ and (Ga$_{1-x}$In$_x$)$_2$O$_3$ at 12%, the nearest computationally treatable concentration. The alignment is strongly strain-dependent: it is of type-B staggered when the alloy is epitaxial on Ga$_2$O$_3$, and type-A straddling in a free-standing superlattice. Our results suggest a limited range of applicability of low-In-content GaInO alloys.
237 - Elsebeth Schroder 2013
The adsorption energies and orientation of methanol on graphene are determined from first-principles density functional calculations. We employ the well-tested vdW-DF method that seamlessly includes dispersion interactions with all of the more close-ranged interactions that result in bonds like the covalent and hydrogen bonds. The adsorption of a single methanol molecule and small methanol clusters on graphene are studied at various coverages. Adsorption in clusters or at high coverages (less than a monolayer) is found to be preferable, with the methanol C-O axis approximately parallel to the plane of graphene. The adsorption energies calculated with vdW-DF are compared with previous DFT-D and MP2-based calculations for single methanol adsorption on flakes of graphene (polycyclic aromatic hydrocarbons). For the high coverage adsorption energies we also find reasonably good agreement with previous desorption measurements.
Knowledge of the molecular frontier levels alignment in the ground state can be used to predict the photocatalytic activity of an interface. The position of the adsorbates highest occupied molecular orbital (HOMO) levels relative to the substrates valence band maximum (VBM) in the interface describes the favorability of photogenerated hole transfer from the VBM to the adsorbed molecule. This is a key quantity for assessing and comparing H$_2$O photooxidation activities on two prototypical photocatalytic TiO$_2$ surfaces: anatase (A)-TiO$_2$(101) and rutile (R)-TiO$_2$(110). Using the projected density of states (DOS) from state-of-the-art quasiparticle (QP) $G_0W_0$ calculations, we assess the relative photocatalytic activity of intact and dissociated H$_2$O on coordinately unsaturated (Ti$_{textit{cus}}$) sites of idealized stoichiometric A-TiO$_2$(101)/R-TiO$_2$(110) and bridging O vacancies (O$_{textit{br}}^{textit{vac}}$) of defective A-TiO$_{2-x}$(101)/R-TiO$_{2-x}$(110) surfaces ($x=frac{1}{4},frac{1}{8}$) for various coverages. Such a many-body treatment is necessary to correctly describe the anisotropic screening of electron-electron interactions at a photocatalytic interface, and hence obtain accurate interfacial level alignments. The more favorable ground state HOMO level alignment for A-TiO$_2$(101) may explain why the anatase polymorph shows higher photocatalytic activities than the rutile polymorph. Our results indicate that (1) hole trapping is more favored on A-TiO$_2$(101) than R-TiO$_2$(110) and (2) HO@Ti$_{textit{cus}}$ is more photocatalytically active than intact H$_2$O@Ti$_{textit{cus}}$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا