No Arabic abstract
Ramsey interferometry provides a natural way to determine the coherence time of most qubit systems. Recent experiments on quantum dots however, demonstrated that dynamical nuclear spin polarization can strongly influence the measurement process, making it difficult to extract the $T_2^*$ coherence time using optical Ramsey pulses. Here, we demonstrate an alternative method for spin coherence measurement that is based on first-order coherence of photons generated in spin-flip Raman scattering. We show that if a quantum emitter is driven by a weak monochromatic laser, Raman coherence is determined exclusively by spin coherence, allowing for a direct determination of spin $T_2^*$ time. When combined with coherence measurements on Rayleigh scattered photons, our technique enables us to identify coherent and incoherent contributions to resonance fluorescence, and to minimize the latter. We verify the validity of our technique by comparing our results to those determined from Ramsey interferometry for electron and heavy-hole spins.
We demonstrate enhanced relaxation and dephasing times of transmon qubits, up to ~ 60 mu s by fabricating the interdigitated shunting capacitors using titanium nitride (TiN). Compared to lift-off aluminum deposited simultaneously with the Josephson junction, this represents as much as a six-fold improvement and provides evidence that previous planar transmon coherence times are limited by surface losses from two-level system (TLS) defects residing at or near interfaces. Concurrently, we observe an anomalous temperature dependent frequency shift of TiN resonators which is inconsistent with the predicted TLS model.
We experimentally investigate the protection of electron spin coherence of nitrogen vacancy (NV) center in diamond by dynamical nuclear polarization. The electron spin decoherence of an NV center is caused by the magnetic ield fluctuation of the $^{13}$C nuclear spin bath, which contributes large thermal fluctuation to the center electron spin when it is in equilibrium state at room temperature. To address this issue, we continuously transfer the angular momentum from electron spin to nuclear spins, and pump the nuclear spin bath to a polarized state under Hartman-Hahn condition. The bath polarization effect is verified by the observation of prolongation of the electron spin coherence time ($T_2^*$). Optimal conditions for the dynamical nuclear polarization (DNP) process, including the pumping pulse duration and depolarization effect of laser pulses, are studied. Our experimental results provide strong support for quantum information processing and quantum simulation using polarized nuclear spin bath in solid state systems.
The uncontrolled interaction of a quantum system with its environment is detrimental for quantum coherence. In the context of solid-state qubits, techniques to mitigate the impact of fluctuating electric and magnetic fields from the environment are well-developed. In contrast, suppression of decoherence from thermal lattice vibrations is typically achieved only by lowering the temperature of operation. Here, we use a nano-electro-mechanical system (NEMS) to mitigate the effect of thermal phonons on a solid-state quantum emitter without changing the system temperature. We study the silicon-vacancy (SiV) colour centre in diamond which has optical and spin transitions that are highly sensitive to phonons. First, we show that its electronic orbitals are highly susceptible to local strain, leading to its high sensitivity to phonons. By controlling the strain environment, we manipulate the electronic levels of the emitter to probe, control, and eventually, suppress its interaction with the thermal phonon bath. Strain control allows for both an impressive range of optical tunability and significantly improved spin coherence. Finally, our findings indicate that it may be possible to achieve strong coupling between the SiV spin and single phonons, which can lead to the realisation of phonon-mediated quantum gates and nonlinear quantum phononics.
Solid-state electronic spin systems such as nitrogen-vacancy (NV) color centers in diamond are promising for applications of quantum information, sensing, and metrology. However, a key challenge for such solid-state systems is to realize a spin coherence time that is much longer than the time for quantum spin manipulation protocols. Here we demonstrate an improvement of more than two orders of magnitude in the spin coherence time ($T_2$) of NV centers compared to previous measurements: $T_2 approx 0.5$ s at 77 K, which enables $sim 10^7$ coherent NV spin manipulations before decoherence. We employed dynamical decoupling pulse sequences to suppress NV spin decoherence due to magnetic noise, and found that $T_2$ is limited to approximately half of the longitudinal spin relaxation time ($T_1$) over a wide range of temperatures, which we attribute to phonon-induced decoherence. Our results apply to ensembles of NV spins and do not depend on the optimal choice of a specific NV, which could advance quantum sensing, enable squeezing and many-body entanglement in solid-state spin ensembles, and open a path to simulating a wide range of driven, interaction-dominated quantum many-body Hamiltonians.
Decoherence largely limits the physical realization of qubits and its mitigation is critical to quantum science. Here, we construct a robust qubit embedded in a decoherence-protected subspace, obtained by hybridizing an applied microwave drive with the ground-state electron spin of a silicon carbide divacancy defect. The qubit is protected from magnetic, electric, and temperature fluctuations, which account for nearly all relevant decoherence channels in the solid state. This culminates in an increase of the qubits inhomogeneous dephasing time by over four orders of magnitude (to > 22 milliseconds), while its Hahn-echo coherence time approaches 64 milliseconds. Requiring few key platform-independent components, this result suggests that substantial coherence improvements can be achieved in a wide selection of quantum architectures.