Strong coupling and high contrast all optical modulation in atomic cladding waveguides


Abstract in English

In recent years we are witnessing a flourish in research aimed to facilitate alkali vapors in guided wave configurations. Owing to the significant reduction in device dimensions, the increase in density of states, the interaction with surfaces and primarily the high intensities carried along the structure, a rich world of light vapor interactions can be studied, and new functionalities, e.g. low power nonlinear light-matter interactions can be achieved. One immense remaining challenge is to study the effects of quantum coherence and shifts in such nano-scale waveguides, characterized by ultra-small mode areas and fast dynamics. Here, we construct a serpentine silicon-nitride wave guide, having atomic vapor as its cladding. The unprecedented mode volume of 5e-13 m^3 supported over a length of 17 mm is used to demonstrate efficient linear and non-linear spectroscopy. Fascinating and important phenomena such as van der Waals shifts, dynamical stark shifts, and coherent effects such as strong coupling (in the form of Autler Townes splitting) are all observed. The serpentine atomic cladding is a promising building block for a variety of light vapor experiments, as it offers a very small footprint, enables operation with relatively low density of atoms and extremely strong confinement of light and vapor. As such it may be used for important applications, such as all optical switching, frequency referencing, and magnetometry to name a few.

Download