Do you want to publish a course? Click here

Clustering in stable and exotic nuclei

104   0   0.0 ( 0 )
 Added by Christian Beck
 Publication date 2016
  fields
and research's language is English
 Authors C. Beck




Ask ChatGPT about the research

Since the pioneering discovery of molecular resonances in the 12C+12C reaction more than half a century ago a great deal of research work has been undertaken in alpha clustering. Our knowledge on physics of nuclear molecules has increased considerably and nuclear clustering remains one of the most fruitful domains of nuclear physics, facing some of the greatest challenges and opportunities in the years ahead. The occurrence of exotic shapes and Bose-Einstein alpha condensates in light N=Z alpha-conjugate nuclei is investigated. Various approaches of the superdeformed and hyperdeformed bands associated with quasimolecular resonant structures are presented. Evolution of clustering from stability to the drip-lines is examined: clustering aspects are, in particular, discussed for light exotic nuclei with large neutron excess such as neutron-rich Oxygen isotopes with their complete spectroscopy.



rate research

Read More

62 - C. Beck 2018
Since the discovery of molecular resonances in $^{12}$C+$^{12}$C in the early sixties a great deal of research work has been undertaken to study alpha-clustering. Our knowledge on physics of nuclear molecules has increased considerably and nuclear clustering remains one of the most fruitful domains of nuclear physics, facing some of the greatest challenges and opportunities in the years ahead. Occurrence of exotic shapes and Bose-Einstein Condensates in light alpha-cluster nuclei are investigated. Various approaches of superdeformed/hyperdeformed shapes associated with quasimolecular resonant structures are discussed. The astrophysical reaction rate of 12C+12C is extracted from recent fusion measurements at deep subbarrier energies near the Gamov window. Evolution of clustering from stability to the drip-lines is examined.
215 - C. Beck 2009
An experimental overview of reactions induced by the stable, but weakly-bound nuclei 6Li, 7Li and 9Be, and by the exotic, halo nuclei 6He, 8B, 11Be and 17F on medium-mass targets, such as 58Ni, 59Co or 64Zn, is presented. Existing data on elastic scattering, total reaction cross sections, fusion processes, breakup and transfer channels are discussed in the framework of a CDCC approach taking into account the breakup degree of freedom.
154 - W.N. Catford 2013
The clustering of nucleons in nuclei is a widespread but elusive phenomenon for study. Here, we wish to highlight the variety of theoretical approaches, and demonstrate how they are mutually supportive and complementary. On the experimental side, we describe recent advances in the study of the classic cluster nucleus 24Mg. Also, recent studies of clustering in nuclei approaching the neutron drip line are described. In the region near N/Z=2, both theory and experiment now suggest that multi-centre cluster structure is important, in particular for the very neutron rich beryllium isotopes.
The atomic nucleus is a quantum many-body system whose constituent nucleons (protons and neutrons) are subject to complex nucleon-nucleon interactions that include spin- and isospin-dependent components. For stable nuclei, already several decades ago, emerging seemingly regular patterns in some observables could be described successfully within a shell-model picture that results in particularly stable nuclei at certain magic fillings of the shells with protons and/or neutrons: N,Z = 8, 20, 28, 50, 82, 126. However, in short-lived, so-called exotic nuclei or rare isotopes, characterized by a large N/Z asymmetry and located far away from the valley of beta stability on the nuclear chart, these magic numbers, viewed through observables, were shown to change. These changes in the regime of exotic nuclei offer an unprecedented view at the roles of the various components of the nuclear force when theoretical descriptions are confronted with experimental data on exotic nuclei where certain effects are enhanced. This article reviews the driving forces behind shell evolution from a theoretical point of view and connects this to experimental signatures.
83 - S.E.A. Orrigo 2006
Fano-resonances are investigated as a new continuum excitation mode in exotic nuclei. By theoretical model calculations we show that the coupling of a single particle elastic channel to closed core-excited channels leads to sharp resonances in the low-energy continuum. A signature for such bound states embedded in the continuum (BSEC) are characteristic interference effects leading to asymmetric line shapes. Following the quasiparticle-core coupling model we consider the coupling of 1-QP (one-quasiparticle) and 3-QP components and find a number of long-living resonance structures close to the particle threshold. Results for 15C are compared with experimental data, showing that the experimentally observed spectral distribution and the interference pattern are in qualitative agreement with a BSEC interpretation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا