Do you want to publish a course? Click here

Lower limit for differential rotation in members of young loose stellar associations

73   0   0.0 ( 0 )
 Added by Elisa Distefano
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

Surface differential rotation (SDR) plays a key role in dynamo models. SDR estimates are therefore essential for constraining theoretical models. We measure a lower limit to SDR in a sample of solar-like stars belonging to young associations with the aim of investigating how SDR depends on global stellar parameters in the age range (4-95 Myr). The rotation period of a solar-like star can be recovered by analyzing the flux modulation caused by dark spots and stellar rotation. The SDR and the latitude migration of dark-spots induce a modulation of the detected rotation period. We employ long-term photometry to measure the amplitude of such a modulation and to compute the quantity DeltaOmega_phot =2p/P_min -2pi/P_max that is a lower limit to SDR. We find that DeltaOmega_phot increases with the stellar effective temperature and with the global convective turn-over time-scale tau_c. We find that DeltaOmega_phot is proportional to Teff^2.18pm 0.65 in stars recently settled on the ZAMS. This power law is less steep than those found by previous authors, but closest to recent theoretical models. We find that DeltaOmega_phot steeply increases between 4 and 30 Myr and that itis almost constant between 30 and 95 Myr in a 1 M_sun star. We find also that the relative shear increases with the Rossby number Ro. Although our results are qualitatively in agreement with hydrodynamical mean-field models, our measurements are systematically higher than the values predicted by these models. The discrepancy between DeltaOmega_phot measurements and theoretical models is particularly large in stars with periods between 0.7 and 2 d. Such a discrepancy, together with the anomalous SDR measured by other authors for HD 171488 (rotating in 1.31 d), suggests that the rotation period could influence SDR more than predicted by the models.



rate research

Read More

Magnetic cycles have been detected in tens of solar-like stars. The relationship between the cycle properties and global stellar parameters is not fully understood yet. We searched for activity cycles in 90 solar-like stars with ages between 4 and 95 Myr aiming to investigate the properties of activity cycles in this age range. We measured the length $P_{ cyc}$ of a given cycle by analyzing the long-term time-series of three activity indexes. For each star, we computed also the global magnetic activity index <IQR> that is proportional to the amplitude of the rotational modulation and is a proxy of the mean level of the surface magnetic activity. We detected activity cycles in 67 stars. Secondary cycles were also detected in 32 stars. The lack of correlation between $P_{ cyc}$ and $P_{ rot}$ suggest that these stars belong to the Transitional Branch and that the dynamo acting in these stars is different from the solar one. This statement is also supported by the analysis of the butterfly diagrams. We computed the Spearman correlation coefficient $r_{ S}$ between $P_{ cyc}$, <IQR> and different stellar parameters. We found that $P_{ cyc}$ is uncorrelated with all the investigated parameters. The <IQR> index is positively correlated with the convective turn-over time-scale, the magnetic diffusivity time-scale $tau_{ diff}$, and the dynamo number $D_{ N}$, whereas it is anti-correlated with the effective temperature $T_{ eff}$, the photometric shear $DeltaOmega_{rm phot}$ and the radius $R_{ C}$ at which the convective zone is located. We found that $P_{ cyc}$ is about constant and that <IQR> decreases with the stellare age in the range 4-95 Myr. We investigated the magnetic activity of AB Dor A by merging ASAS time-series with previous long-term photometric data. We estimated the length of the AB Dor A primary cycle as $P_{ cyc} = 16.78 pm 2 rm yr$.
174 - P. J. Kapyla 2014
(abridged) Context: Solar-like differential rotation is characterized by a rapidly rotating equator and slower poles. However, theoretical models and numerical simulations can result in a slower equator and faster poles when the rotation is slow. Aims: We study the critical rotational influence under which differential rotation flips from solar-like (fast equator, slow poles) to an anti-solar one (slow equator, fast poles). We estimate the non-diffusive ($Lambda$ effect) and diffusive (turbulent viscosity) contributions to the Reynolds stress. Methods: We present the results of three-dimensional numerical simulations of mildly turbulent convection in spherical wedge geometry. Here we apply a fully compressible setup which would suffer from a prohibitive time step constraint if the real solar luminosity was used. We regulate the convective velocities by varying the amount of heat transported by thermal conduction, turbulent diffusion, and resolved convection. Results: Increasing the efficiency of resolved convection leads to a reduction of the rotational influence on the flow and a sharp transition from solar-like to anti-solar differential rotation for Coriolis numbers around 1.3. We confirm the recent finding of a large-scale flow bistability: contrasted with running the models from an initial condition with unprescribed differential rotation, the initialization of the model with certain kind of rotation profile sustains the solution over a wider parameter range. Conclusions: Our results may have implications for real stars that start their lives as rapid rotators implying solar-like rotation in the early main-sequence evolution. As they slow down, they might be able to retain solar-like rotation for lower Coriolis numbers before switching to anti-solar rotation. This could partially explain the puzzling findings of anti-solar rotation profiles for models in the solar parameter regime.
80 - Eric D. Feigelson 2017
We discuss how contemporary multiwavelength observations of young OB-dominated clusters address long-standing astrophysical questions: Do clusters form rapidly or slowly with an age spread? When do clusters expand and disperse to constitute the field star population? Do rich clusters form by amalgamation of smaller subclusters? What is the pattern and duration of cluster formation in massive star forming regions (MSFRs)? Past observational difficulties in obtaining good stellar censuses of MSFRs have been alleviated in recent studies that combine X-ray and infrared surveys to obtain rich, though still incomplete, censuses of young stars in MSFRs. We describe here one of these efforts, the MYStIX project, that produced a catalog of 31,784 probable members of 20 MSFRs. We find that age spread within clusters are real in the sense that the stars in the core formed after the cluster halo. Cluster expansion is seen in the ensemble of (sub)clusters, and older dispersing populations are found across MSFRs. Direct evidence for subcluster merging is still unconvincing. Long-lived, asynchronous star formation is pervasive across MSFRs.
[abridged] Unbound young stellar systems, the loose ensembles of physically related young bright stars, trace the typical regions of recent star formation in galaxies. Their morphologies vary from small associations of stars to enormous stellar complexes. Being associated with star-forming regions of various sizes, they trace the regions where stars form at various scales, from compact clusters to whole galactic disks. They have been, thus, the focus of several studies with special interest on their demographics, classification, and structural morphology. Their surveys demonstrate that the clear distinction of these systems into well-defined classes is not straightforward, due to their low densities, asymmetric shapes and variety in structural parameters. Unbound stellar structures follow a hierarchical clustering pattern up to the scale of a whole star-forming galaxy. This structural pattern, which is usually characterized as self-similar or fractal, appears to be identical to that of star-forming giant molecular clouds and interstellar gas, driven mainly by turbulence cascade. In this short review, I make a concise compilation of our understanding of unbound young stellar systems across various environments in the local universe, as it is developed during the last 60 years. I present a factual assessment of the clustering behavior of star formation, as revealed from the assembling pattern of stars across loose stellar structures and its relation to the interstellar medium and the environmental conditions. I also provide a consistent account of the processes that possibly play important role in the formation of unbound stellar systems, compiled from both theoretical and observational investigations on the field.
146 - Erin Mentuch 2008
We estimate cluster ages from lithium depletion in five pre-main-sequence groups found within 100 pc of the Sun: TW Hydrae Association, Eta Chamaeleontis Cluster, Beta Pictoris Moving Group, Tucanae-Horologium Association and AB Doradus Moving Group. We determine surface gravities, effective temperatures and lithium abundances for over 900 spectra through least squares fitting to model-atmosphere spectra. For each group, we compare the dependence of lithium abundance on temperature with isochrones from pre-main-sequence evolutionary tracks to obtain model dependent ages. We find that the Eta Chamaelontis Cluster and the TW Hydrae Association are the youngest, with ages of 12+/-6 Myr and 12+/-8 Myr, respectively, followed by the Beta Pictoris Moving Group at 21+/-9 Myr, the Tucanae-Horologium Association at 27+/-11 Myr, and the AB Doradus Moving Group at an age of at least 45 Myr (where we can only set a lower limit since the models -- unlike real stars -- do not show much lithium depletion beyond this age). Here, the ordering is robust, but the precise ages depend on our choice of both atmospheric and evolutionary models. As a result, while our ages are consistent with estimates based on Hertzsprung-Russell isochrone fitting and dynamical expansion, they are not yet more precise. Our observations do show that with improved models, much stronger constraints should be feasible: the intrinsic uncertainties, as measured from the scatter between measurements from different spectra of the same star, are very low: around 10 K in effective temperature, 0.05 dex in surface gravity, and 0.03 dex in lithium abundance.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا