Do you want to publish a course? Click here

Temperature Dependence of Angular Momentum Transport Across Interfaces

71   0   0.0 ( 0 )
 Added by Kai Chen
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

Angular momentum transport in magnetic multilayered structures plays a central role in spintronic physics and devices. The angular momentum currents or spin currents are carried by either quasi-particles such as electrons and magnons, or by macroscopic order parameters such as local magnetization of ferromagnets. Based on the generic interface exchange interaction, we develop a microscopic theory that describes interfacial spin conductance for various interfaces among non-magnetic metals, ferromagnetic and antiferromagnetic insulators. Spin conductance and its temperature dependence are obtained for different spin batteries including spin pumping, temperature gradient and spin Hall effect. As an application of our theory, we calculate the spin current in a trilayer made of a ferromagnetic insulator, an antiferromagnetic insulator and a non-magnetic heavy metal. The calculated results on the temperature dependence of spin conductance quantitatively agree with the existing experiments.

rate research

Read More

The finite-temperature transport properties of FeRh compounds are investigated by first-principles Density Functional Theory-based calculations. The focus is on the behavior of the longitudinal resistivity with rising temperature, which exhibits an abrupt decrease at the metamagnetic transition point, $T = T_m$ between ferro- and antiferromagnetic phases. A detailed electronic structure investigation for $T geq 0$ K explains this feature and demonstrates the important role of (i) the difference of the electronic structure at the Fermi level between the two magnetically ordered states and (ii) the different degree of thermally induced magnetic disorder in the vicinity of $T_m$, giving different contributions to the resistivity. To support these conclusions, we also describe the temperature dependence of the spin-orbit induced anomalous Hall resistivity and Gilbert damping parameter. For the various response quantities considered the impact of thermal lattice vibrations and spin fluctuations on their temperature dependence is investigated in detail. Comparison with corresponding experimental data finds in general a very good agreement.
The existed theories and methods for calculating interfacial thermal conductance of solid-solid interface lead to diverse values that deviate from experimental measurements. In this letter, We propose a model to estimate the ITC at high temperature without comprehensive calculations, where the interface between two dissimilar solids can be treated as an amorphous thin layer and the coordination number density across interface becomes a key parameter. Our model predicts that the ITCs of various interfaces at 300K are in a narrow range: 10$^{7}$W m$^{-2}$K$^{-1}$ $sim $10$^{9}$ W m$^{-2}$ K$^{-1}$, which is in good agreement with the experimental measurement.
The perpendicular magnetic anisotropy (PMA) at magnetic transition metal/oxide interfaces is a key element in building out-of-plane magnetized magnetic tunnel junctions for spin-transfer-torque magnetic random access memory (STT-MRAM). Size downscaling renders magnetic properties more sensitive to thermal effects. Thus, understanding temperature dependence of magnetic anisotropy becomes crucial. In this work, we theoretically address the correlation between temperature dependence of PMA and magnetization in typical Fe/MgO-based structures. In particular, the possible mechanisms behind experimentally reported deviations from the Callen and Callen scaling power law are analyzed. First-principles calculations reveal small high-order anisotropy terms ruling out an intrinsic microscopic mechanism underlying those deviations. Neglecting higher-order anisotropy terms in the atomisitic spin Hamiltonian, two possible extrinsic macroscopic mechanisms are unveiled: influence of the dead layer, always present in storage layer of STT-MRAM cells, and spatial inhomogeneities of interfacial magnetic anisotropy. We show that presence of a dead layer simultaneously with scaling the anisotropy constant by the total magnetization of the sample rather than that of the interface itself lead to low scaling powers. In the second mechanism, increasing the percentage of inhomogeneity in the interfacial PMA is revealed to decrease the scaling power. Apart from those different mechanisms, the layer-resolved temperature-dependence of PMA is shown to ideally follow the Callen and Callen scaling power law for each individual Fe layer. These results allow coherently explaining the difference in scaling powers relating anisotropy and magnetization thermal variations reported in earlier experiments. This is crucial for the understanding of the thermal stability of the storage layer magnetization in STT-MRAM applications.
We analyze electron transport through a quantum shuttle for the applied voltage below the instability threshold. We obtain current-voltage characteristics of this system and show that at low temperature they exhibit pronounced steps. The temperature dependence of the current is calculated in the range from 2K to 300K and it demonstrates a wide variety of behavior - from 1/T decreasing to an exponential growth - depending on how deep the shuttle is in quantum regime. The results obtained are compared to experimental data on electron transport through long molecules.
Organic multiferroic tunnel junctions (OMFTJs) with multi-resistance states have been proposed and drawn intensive interests due to their potential applications, for examples of memristor and spintronics based synapse devices. The ferroelectric control of spin-polarization at ferromagnet (FM)/ferroelectric organic (FE-Org) interface by electrically switching the ferroelectric polarization of the FE-Org has been recently realized. However, there is still a lack of understanding of the transport properties in OMFTJs, especially the interplay between the ferroelectric domain structure in the organic barrier and the spin-polarized electron tunneling through the barrier. Here, we report on a systematic study of the temperature dependent transport behavior in La0.6Sr0.4MnO3/PVDF/Co OMFTJs. It is found that the thermal fluctuation of the ferroelectric domains plays an important role on the transport properties. When T>120K, the opposite temperature dependence of resistance for in up and down ferroelectric polarization states results in a rapid diminishing of tunneling electroresistance (TER). These results contribute to the understanding of the transport properties for designing high performance OMFTJs for memristor and spintronics applications.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا