Do you want to publish a course? Click here

Thermal production of charm quarks in heavy ion collisions at Future Circular Collider

139   0   0.0 ( 0 )
 Added by Yunpeng Liu
 Publication date 2016
  fields
and research's language is English




Ask ChatGPT about the research

By solving the rate equation in an expanding quark-gluon plasma, we study thermal production of charm quarks in central Pb+Pb collisions at the Future Circular Collider. With the charm quark production cross section taken from the perturbative QCD at the next-to-leading order, we find that charm quark production from the quark-gluon plasma can be appreciable compared to that due to initial hard scattering between colliding nucleons.



rate research

Read More

The Future Circular Collider (FCC) design study is aimed at assessing the physics potential and the technical feasibility of a new collider with centre-of-mass energies, in the hadron-hadron collision mode including proton and nucleus beams, more than seven-times larger than the nominal LHC energies. An electron-positron collider in the same tunnel is also considered as an intermediate step, which would provide the electron-hadron option in the long term. First ideas on the physics opportunities with heavy ions at the FCC are presented, covering the physics of Quark-Gluon Plasma, gluon saturation, photon-induced collisions, as well as connections with ultra-high-energy cosmic rays.
114 - Min He , Ralf Rapp 2019
Understanding the hadronization of the quark-gluon plasma (QGP) remains a challenging problem in the study of strong-interaction matter as produced in ultrarelativistic heavy-ion collisions (URHICs). The large mass of heavy quarks renders them excellent tracers of the color neutralization process of the QGP when they convert into various heavy-flavor (HF) hadrons. We develop a 4-momentum conserving recombination model for HF mesons and baryons that recovers the thermal and chemical equilibrium limits and accounts for space-momentum correlations (SMCs) of heavy quarks with partons of the hydrodynamically expanding QGP, thereby resolving a long-standing problem in quark coalescence models. The SMCs enhance the recombination of fast-moving heavy quarks with high-flow thermal quarks in the outer regions of the fireball. We also improve the hadro-chemistry with missing charm-baryon states, previously found to describe the large $Lambda_c/D^0$ ratio observed in proton-proton collisions. Both SMCs and hadro-chemistry, as part of our HF hydro-Langevin-recombination model for the strongly coupled QGP, importantly figure in the description of recent data for the $Lambda_c/D^0$ ratio and $D$-meson elliptic flow in URHICs.
We study the production of (hyper-)nuclei and di-baryons in most central heavy Ion collisions at energies of $E_{lab}=1-160 A$ GeV. In particular we are interested in clusters produced from the hot and dense fireball. The formation rate of strange and non-strange clusters is estimated by assuming thermal production from the intermediate phase of the UrQMD-hydro hybrid model and alternatively by the coalescence mechanism from a hadronic cascade model. Both model types are compared in detail. For most energies we find that both approaches agree in their predictions for the yields of the clusters. Only for very low beam energies, and for di-baryons including $Xi$s, we observe considerable differences. We also study the production of anti-matter clusters up to top RHIC energies and show that the observation of anti-$^4He$ and even anti-$^4_{Lambda}He$ is feasible. We have found a considerable qualitative difference in the energy dependence of the strangeness population factor $R_H$ when comparing the thermal production with the coalescence results.
Dileptons are considered as one of the cleanest signals of the quark-gluon plasma (QGP), however, the QGP radiation is masked by many background sources from either hadronic decays or semileptonic decays from correlated charm pairs. In this study we investigate the relative contribution of these channels in heavy-ion collisions from $sqrt{s_{rm NN}}=$ 8 GeV to 5 TeV with a focus on the competition between the thermal QGP radiation and the semileptonic decays from correlated $D-$meson pairs. As a tool we employ the parton-hadron-string dynamics (PHSD) transport approach to study dilepton spectra in Pb+Pb (Au+Au) collisions in a wide energy range incorporating for the first time a fully microscopic treatment of the charm dynamics and their semileptonic decays. We find that the dileptons from correlated $D-$meson decays dominate the thermal radiation from the QGP in central Pb+Pb collisions at the intermediate masses (1.2 GeV $< M <$ 3 GeV) for $sqrt{s_{rm NN}} > $ 40 GeV, while for $sqrt{s_{rm NN}}=$ 8 to 20 GeV the contribution from $D,{bar D}$ decays to the intermediate mass dilepton spectra is subleading such that one should observe a rather clear signal from the QGP radiation. We, furthermore, study the $p_T$-spectra and the $R_{AA}(p_T)$ of single electrons at different energies as well as the excitation function of the inverse slope of the $m_T$- spectra for intermediate-mass dileptons from the QGP and from charm decays. We find moderate but characteristic changes in the inverse slope parameter for $sqrt{s_{rm NN}} > $ 20 GeV which can be observed experimentally in high statistics data. Additionally, we provide detailed predictions for dilepton spectra from Pb+Pb collisions at $sqrt{s_{rm NN}} = $ 5.02 TeV.
Different orientations of $alpha$-clustered carbon nuclei colliding with heavy ions can result in a large variation in the value of anisotropic flow. Thus, photon flow observables from clustered ${rm^{12}C}$ and ${rm^{197}Au}$ collisions could be a potential probe to study the `direct photon puzzle. We calculate the transverse momentum spectra and anisotropic flow coefficients ($v_n$) of thermal photons from collisions of triangular $alpha$-clustered carbon and gold at $sqrt{s_{rm NN}}=200$ GeV at RHIC using a hydrodynamic model framework and compare the results with those obtained from unclustered carbon and gold collisions. The slope of the thermal photon spectra is found to vary moderately for different orientations of collisions. However, we find that the elliptic ($v_2$) and triangular flow ($v_3$) coefficients of direct photons for specific configurations are significantly larger and predominantly formed by the QGP radiation. A strong anti-correlation between initial spatial ellipticity and triangularity is observed in an event-by-event framework of $alpha$-clustered ${rm C+Au}$ collisions. These special features provide us an opportunity to detect the exotic nature of cluster structure inside carbon nucleus using the photon probe in the future experiments.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا