Realistic description of the rotational bands in rare earth nuclei by angular-momentum-projected multi-cranked configuration-mixing method


Abstract in English

Recently we have proposed a reliable method to describe the rotational band in a fully microscopic manner. The method has recourse to the configuration-mixing of several cranked mean-field wave functions after the angular-momentum-projection. By applying the method with the Gogny D1S force as an effective interaction, we investigate the moments of inertia of the ground state rotational bands in a number of selected nuclei in the rare earth region. As another application we try to describe, for the first time, the two-neutron aligned band in $^{164}$Er, which crosses the ground state band and becomes the yrast states at higher spins. Fairly good overall agreements with the experimental data are achieved; for nuclei, where the pairing correlations are properly described, the agreements are excellent. This confirms that the previously proposed method is really useful for study of the nuclear rotational motion.

Download