Do you want to publish a course? Click here

Production of tau lepton pairs with high pT jets at the LHC and the TauSpinner reweighting algorithm

130   0   0.0 ( 0 )
 Added by Zbigniew Was
 Publication date 2016
  fields
and research's language is English




Ask ChatGPT about the research

The TauSpinner algorithm allows to modify the physics of the Monte Carlo generated samples due to the changed assumptions of event production dynamics, without re-generating events. To each event it attributes weights: the spin effects of tau-lepton production or decay, or the production mechanism are modified. There is no need to repeat the detector response simulation. We document the extension to 2 to 4 processes in which the matrix elements for the parton-parton scattering amplitudes into a tau-lepton pair and two outgoing partons are used. Tree-level matrix elements for the Standard Model processes, including the Higgs boson production are used. Automatically generated codes by MadGraph5 have been adapted. Tests of the matrix elements, reweighting algorithm and numerical results are presented. For averaged tau lepton polarisation, we perform comparison of 2 to 2 and 2 to 4 matrix elements used to calculate the spin weight in pp to tau tau j j events. We show, that for events with tau-lepton pair close to the Z-boson peak, the tau-lepton polarisation calculated using 2 to 4 matrix elements is very close to the one calculated using 2 to 2 Born process only. For the m_(tautau) masses above the Z-boson peak, the effect from including 2 to 4 matrix elements is also marginal, however when restricting into subprocesses qq,q bar q to tau tau j j only, it can lead to a 10% difference on the predicted tau-lepton polarisation. Choice of electroweak scheme can have significant impact. The modification of the electroweak or strong interaction can be performed with the re-weighting technique. TauSpinner v.2.0.0, allows to introduce non-standard couplings for the Higgs boson and study their effects in the vector-boson-fusion. The discussion is relegated to forthcoming publications.



rate research

Read More

The TauSpinner algorithm is a tool that allows to modify the physics model of the Monte Carlo generated samples due to the changed assumptions of event production dynamics, but without the need of re-generating events. With the help of weights $tau$-lepton production or decay processes can be modified accordingly to a new physics model. In a recent paper a new version TauSpinner ver.2.0.0 has been presented which includes a provision for introducing non-standard states and couplings and study their effects in the vector-boson-fusion processes by exploiting the spin correlations of $tau$-lepton pair decay products in processes where final states include also two hard jets. In the present paper we document how this can be achieved taking as an example the non-standard spin-2 state that couples to Standard Model particles and tree-level matrix elements with complete helicity information included for the parton-parton scattering amplitudes into a $tau$-lepton pair and two outgoing partons. This implementation is prepared as the external (user provided) routine for the TauSpinner algorithm. It exploits amplitudes generated by MadGraph5 and adopted to the TauSpinner algorithm format. Consistency tests of the implemented matrix elements, reweighting algorithm and numerical results for observables sensitive to $tau$ polarization are presented.
The tau-lepton plays an important role in the physics program at LHC. Its spin can be used for separation of signal from background or in measuring properties of New Particles decaying to tau leptons. The TauSpinner package represents a tool to modify tau spin effects in any sample containing tau leptons. Generated events, featuring taus produced from intermediate state W, Z, H bosons can be used as an input. The information on the polarization and spin correlations is reconstructed from the kinematics of the tau lepton(s) (nutau in case of W-mediated processes) and tau decay products. By weights, attributed on the event-by-event basis, it enables numerical evaluation and/or modification of the spin effects. We review distributions to monitor spin effects in leptonic and hadronic tau decays with up to three pions, to provide benchmarks for validation of spin content of the event sample and to visualize the tau lepton spin polarization and correlation effects. The demonstration examples for use of TauSpinner libraries, are documented. New validation methods of such an approach are provided. Other topics, like TauSpinner systematic errors or sensitivity of experimental distributions to spin, are addressed in part only. This approach is of interest for implementation of spin effects in embedded tau lepton samples, where Z to mu mu events from data of muons are replaced by simulated tau leptons. Embedding is used at LHC for estimating Z to tau tau background to H to tau tau signatures.
We consider the possibility of studying new physics that singles out the tau-lepton at the LHC. We concentrate on the tau-lepton charge asymmetry in tau+tau- pair production as a tool to probe this physics beyond the Standard Model. We consider two generic scenarios for the new physics. We first study a non-universal Z boson as an example of a new resonance that can single out tau-leptons. We then consider vector lepto-quarks coupling of the first generation quarks with the third generation leptons as an example of non-resonant new physics. We find that in both cases the charge asymmetry can be sufficiently sensitive to the new physics to provide useful constraints at the LHC.
63 - J. Duarte 2017
We investigate possible scenarios of light-squark production at the LHC as a new mechanism to produce Higgs bosons in association with jets. The study is motivated by the SUSY search for H+jets events, performed by the CMS collaboration on 8 and 13 TeV data using the razor variables. Two simplified models are proposed to interpret the observations in this search. The constraint from Run I and the implications for Run II and beyond are discussed.
We present a study of higher order QCD corrections beyond NLO to processes with an electroweak vector boson, W or Z, in association with jets. We focus on the regions of high transverse momenta of commonly used differential distributions. We employ the LoopSim method to merge NLO samples of different multiplicity obtained from MCFM and from BLACKHAT+SHERPA in order to compute the dominant part of the NNLO corrections for high-pT observables. We find that these corrections are indeed substantial for a number of experimentally relevant observables. For other observables, they lead to significant reduction of scale uncertainties.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا