No Arabic abstract
In this paper we describe the architecture of a Platform as a Service (PaaS) oriented to computing and data analysis. In order to clarify the choices we made, we explain the features using practical examples, applied to several known usage patterns in the area of HEP computing. The proposed architecture is devised to provide researchers with a unified view of distributed computing infrastructures, focusing in facilitating seamless access. In this respect the Platform is able to profit from the most recent developments for computing and processing large amounts of data, and to exploit current storage and preservation technologies, with the appropriate mechanisms to ensure security and privacy.
Blockchain is an innovative distributed ledger technology which has attracted a wide range of interests for building the next generation of applications to address lack-of-trust issues in business. Blockchain as a service (BaaS) is a promising solution to improve the productivity of blockchain application development. However, existing BaaS deployment solutions are mostly vendor-locked: they are either bound to a cloud provider or a blockchain platform. In addition to deployment, design and implementation of blockchain-based applications is a hard task requiring deep expertise. Therefore, this paper presents a unified blockchain as a service platform (uBaaS) to support both design and deployment of blockchain-based applications. The services in uBaaS include deployment as a service, design pattern as a service and auxiliary services. In uBaaS, deployment as a service is platform agnostic, which can avoid lock-in to specific cloud platforms, while design pattern as a service applies design patterns for data management and smart contract design to address the scalability and security issues of blockchain. The proposed solutions are evaluated using a real-world quality tracing use case in terms of feasibility and scalability.
The global economic recession and the shrinking budget of IT projects have led to the need of development of integrated information systems at a lower cost. Today, the emerging phenomenon of cloud computing aims at transforming the traditional way of computing by providing both software applications and hardware resources as a service. With the rapid evolution of Information Communication Technology (ICT) governments, organizations and businesses are looking for solutions to improve their services and integrate their IT infrastructures. In recent years advanced technologies such as SOA and Cloud computing have been evolved to address integration problems. The Clouds enormous capacity with comparable low cost makes it an ideal platform for SOA deployment. This paper deals with the combined approach of Cloud and Service Oriented Architecture along with a Case Study and a review.
This paper describes the achievements of the H2020 project INDIGO-DataCloud. The project has provided e-infrastructures with tools, applications and cloud framework enhancements to manage the demanding requirements of scientific communities, either locally or through enhanced interfaces. The middleware developed allows to federate hybrid resources, to easily write, port and run scientific applications to the cloud. In particular, we have extended existing PaaS (Platform as a Service) solutions, allowing public and private e-infrastructures, including those provided by EGI, EUDAT, and Helix Nebula, to integrate their existing services and make them available through AAI services compliant with GEANT interfederation policies, thus guaranteeing transparency and trust in the provisioning of such services. Our middleware facilitates the execution of applications using containers on Cloud and Grid based infrastructures, as well as on HPC clusters. Our developments are freely downloadable as open source components, and are already being integrated into many scientific applications.
The prevailing net-centric environment demands and enables modeling and simulation to combine efforts from numerous disciplines. Software techniques and methodology, in particular service-oriented architecture, provide such an opportunity. Service-oriented simulation has been an emerging paradigm following on from object- and process-oriented methods. However, the ad-hoc frameworks proposed so far generally focus on specific domains or systems and each has its pros and cons. They are capable of addressing different issues within service-oriented simulation from different viewpoints. It is increasingly important to describe and evaluate the progress of numerous frameworks. In this paper, we propose a novel three-dimensional reference model for a service-oriented simulation paradigm. The model can be used as a guideline or an analytic means to find the potential and possible future directions of the current simulation frameworks. In particular, the model inspects the crossover between the disciplines of modeling and simulation, service-orientation, and software/systems engineering. Based on the model, we present a comprehensive survey on several classical service-oriented simulation frameworks, including formalism-based, model-driven, interoperability protocol based, eXtensible Modeling and Simulation Framework (XMSF), and Open Grid Services Architecture (OGSA) based frameworks etc. The comparison of these frameworks is also performed. Finally the significance both in academia and practice are presented and future directions are pointed out.
It is widely acknowledged that the forthcoming 5G architecture will be highly heterogeneous and deployed with a high degree of density. These changes over the current 4G bring many challenges on how to achieve an efficient operation from the network management perspective. In this article, we introduce a revolutionary vision of the future 5G wireless networks, in which the network is no longer limited by hardware or even software. Specifically, by the idea of virtualizing the wireless networks, which has recently gained increasing attention, we introduce the Everything-as-a-Service (XaaS) taxonomy to light the way towards designing the service-oriented wireless networks. The concepts, challenges along with the research opportunities for realizing XaaS in wireless networks are overviewed and discussed.