Do you want to publish a course? Click here

Selection bias in dynamically-measured super-massive black hole samples: consequences for pulsar timing arrays

84   0   0.0 ( 0 )
 Added by Alberto Sesana
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

Supermassive black hole -- host galaxy relations are key to the computation of the expected gravitational wave background (GWB) in the pulsar timing array (PTA) frequency band. It has been recently pointed out that standard relations adopted in GWB computations are in fact biased-high. We show that when this selection bias is taken into account, the expected GWB in the PTA band is a factor of about three smaller than previously estimated. Compared to other scaling relations recently published in the literature, the median amplitude of the signal at $f=1$yr$^{-1}$ drops from $1.3times10^{-15}$ to $4times10^{-16}$. Although this solves any potential tension between theoretical predictions and recent PTA limits without invoking other dynamical effects (such as stalling, eccentricity or strong coupling with the galactic environment), it also makes the GWB detection more challenging.



rate research

Read More

We compare the set of local galaxies having dynamically measured black holes with a large, unbiased sample of galaxies extracted from the Sloan Digital Sky Survey. We confirm earlier work showing that the majority of black hole hosts have significantly higher velocity dispersions sigma than local galaxies of similar stellar mass. We use Monte-Carlo simulations to illustrate the effect on black hole scaling relations if this bias arises from the requirement that the black hole sphere of influence must be resolved to measure black hole masses with spatially resolved kinematics. We find that this selection effect artificially increases the normalization of the Mbh-sigma relation by a factor of at least ~3; the bias for the Mbh-Mstar relation is even larger. Our Monte Carlo simulations and analysis of the residuals from scaling relations both indicate that sigma is more fundamental than Mstar or effective radius. In particular, the Mbh-Mstar relation is mostly a consequence of the Mbh-sigma and sigma-Mstar relations, and is heavily biased by up to a factor of 50 at small masses. This helps resolve the discrepancy between dynamically-based black hole-galaxy scaling relations versus those of active galaxies. Our simulations also disfavour broad distributions of black hole masses at fixed sigma. Correcting for this bias suggests that the calibration factor used to estimate black hole masses in active galaxies should be reduced to values of fvir~1. Black hole mass densities should also be proportionally smaller, perhaps implying significantly higher radiative efficiencies/black hole spins. Reducing black hole masses also reduces the gravitational wave signal expected from black hole mergers.
We extend the comparison between the set of local galaxies having dynamically measured black holes with galaxies in the Sloan Digital Sky Survey (SDSS). We first show that the most up-to-date local black hole samples of early-type galaxies with measurements of effective radii, luminosities, and Sersic indices of the bulges of their host galaxies, have dynamical mass and Sersic index distributions consistent with those of SDSS early-type galaxies of similar bulge stellar mass. The host galaxies of local black hole samples thus do not appear structurally different from SDSS galaxies, sharing similar dynamical masses, light profiles and light distributions. Analysis of the residuals reveals that velocity dispersion is more fundamental than Sersic index n in the scaling relations between black holes and galaxies. Indeed, residuals with Sersic index could be ascribed to the (weak) correlation with bulge mass or even velocity dispersion. Finally, targetted Monte Carlo simulations that include the effects of the sphere of influence of the black hole, and tuned to reproduce the observed residuals and scaling relations in terms of velocity dispersion and stellar mass, show that, at least for galaxies with Mbulge > 1e10 Msun and n>5, the observed mean black hole mass at fixed Sersic index is biased significantly higher than the intrinsic value.
Recent work has confirmed that the masses of supermassive black holes, estimated from scaling relations with global properties such as the stellar masses of their host galaxies, may be biased high. Much of this may be caused by the requirement that the gravitational sphere of influence of the black hole must be resolved for the black-hole mass to be reliably estimated. We revisit this issue by using a comprehensive galaxy evolution semi-analytic model, which self-consistently evolves supermassive black holes from high-redshift seeds via gas accretion and mergers, and also includes AGN feedback. Once tuned to reproduce the (mean) correlation of black-hole mass with velocity dispersion, the model is unable to also account for the correlation with stellar mass. This behaviour is independent of the models parameters, thus suggesting an internal inconsistency in the data. The predicted distributions, especially at the low-mass end, are also much broader than observed. However, if selection effects are included, the models predictions tend to align with the observations. We also demonstrate that the correlations between the residuals of the local scaling relations are more effective than the scaling relations themselves at constraining AGN feedback models. In fact, we find that our semi-analytic model, while in apparent broad agreement with the scaling relations when accounting for selection biases, yields very weak correlations between their residuals at fixed stellar mass, in stark contrast with observations. This problem persists when changing the AGN feedback strength, and is also present in the $zsim 0$ outputs of the hydrodynamic cosmological simulation Horizon-AGN, which includes state-of-the-art treatments of AGN feedback. This suggests that current AGN feedback models may be too weak or are simply not capturing the effect of the black hole on the stellar velocity dispersion.
Pulsar Timing Arrays are a prime tool to study unexplored astrophysical regimes with gravitational waves. Here we show that the detection of gravitational radiation from individually resolvable super-massive black hole binary systems can yield direct information about the masses and spins of the black holes, provided that the gravitational-wave induced timing fluctuations both at the pulsar and at the Earth are detected. This in turn provides a map of the non-linear dynamics of the gravitational field and a new avenue to tackle open problems in astrophysics connected to the formation and evolution of super-massive black holes. We discuss the potential, the challenges and the limitations of these observations.
Precision timing of large arrays (>50) of millisecond pulsars will detect the nanohertz gravitational-wave emission from supermassive binary black holes within the next ~3-7 years. We review the scientific opportunities of these detections, the requirements for success, and the synergies with electromagnetic instruments operating in the 2020s.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا