Do you want to publish a course? Click here

Coherent X-ray measurements of ion-implantation-induced lattice strains in nano-crystals

99   0   0.0 ( 0 )
 Added by Felix Hofmann
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

Focussed Ion Beam (FIB) milling is a mainstay of nano-scale machining. By manipulating a tightly focussed beam of energetic ions, often gallium (Ga+), FIB can sculpt nanostructures via localised sputtering. This ability to cut solid matter on the nano-scale has revolutionised sample preparation across the life-, earth- and materials sciences. For example FIB is central to microchip prototyping, 3D material analysis, targeted electron microscopy sample extraction and the nanotechnology behind size-dependent material properties. Despite its widespread usage, detailed understanding of the functional consequences of FIB-induced structural damage, intrinsic to the technique, remains elusive. Here, we present nano-scale measurements of three-dimensional, FIB-induced lattice strains, probed using Bragg Coherent X-ray Diffraction Imaging (BCDI). We observe that even low gallium ion doses, typical of FIB imaging, cause substantial lattice distortions. At higher doses, extended self-organised defect structures appear, giving rise to stresses far in excess of the bulk yield limit. Combined with detailed numerical calculations, these observations provide fundamental insight into the nature of the damage created and the structural instabilities that lead to a surprisingly inhomogeneous morphology.



rate research

Read More

Tungsten is the main candidate material for plasma-facing armour components in future fusion reactors. Bombardment with energetic fusion neutrons causes collision cascade damage and defect formation. Interaction of defects with helium, produced by transmutation and injected from the plasma, modifies defect retention and behaviour. Here we investigate the residual lattice strains caused by different doses of helium-ion-implantation into tungsten and tungsten-rhenium alloys. Energy and depth-resolved synchrotron X-ray micro-diffraction uniquely permits the measurement of lattice strain with sub-micron 3D spatial resolution and ~10-4 strain sensitivity. Increase of helium dose from 300 appm to 3000 appm increases volumetric strain by only ~2.4 times, indicating that defect retention per injected helium atom is ~3 times higher at low helium doses. This suggests that defect retention is not a simple function of implanted helium dose, but strongly depends on material composition and presence of impurities. Conversely, analysis of W-1wt% Re alloy samples and of different crystal orientations shows that both the presence of rhenium, and crystal orientation, have comparatively small effect on defect retention. These insights are key for the design of armour components in future reactors where it will be essential to account for irradiation-induced dimensional change when predicting component lifetime and performance.
This study presents a detailed examination of the lattice distortions introduced by glancing incidence Focussed Ion Beam (FIB) milling. Using non-destructive multi-reflection Bragg coherent X-ray diffraction we probe damage formation in an initially pristine gold micro-crystal following several stages of FIB milling. These experiments allow access to the full lattice strain tensor in the micro-crystal with ~25 nm 3D spatial resolution, enabling a nano-scale analysis of residual lattice strains and defects formed. Our results show that 30 keV glancing incidence milling produces fewer large defects than normal incidence milling at the same energy. However the resulting residual lattice strains have similar magnitude and extend up to ~50 nm into the sample. At the edges of the milled surface, where the ion-beam tails impact the sample at near-normal incidence, large dislocation loops with a range of burgers vectors are formed. Further glancing incidence FIB polishing with 5 keV ion energy removes these dislocation loops and reduces the lattice strains caused by higher energy FIB milling. However, even at the lower ion energy, damage-induced lattice strains are present within a ~20 nm thick surface layer. These results highlight the need for careful consideration and management of FIB damage. They also show that low-energy FIB-milling is an effective tool for removing FIB-milling induced lattice strains. This is important for the preparation of micro-mechanical test specimens and strain microscopy samples.
114 - N.W. Phillips , H. Yu , S. Das 2020
Developing a comprehensive understanding of the modification of material properties by neutron irradiation is important for the design of future fission and fusion power reactors. Self-ion implantation is commonly used to mimic neutron irradiation damage, however an interesting question concerns the effect of ion energy on the resulting damage structures. The reduction in the thickness of the implanted layer as the implantation energy is reduced results in the significant quandary: Does one attempt to match the primary knock-on atom energy produced during neutron irradiation or implant at a much higher energy, such that a thicker damage layer is produced? Here we address this question by measuring the full strain tensor for two ion implantation energies, 2 MeV and 20 MeV in self-ion implanted tungsten, a critical material for the first wall and divertor of fusion reactors. A comparison of 2 MeV and 20 MeV implanted samples is shown to result in similar lattice swelling. Multi-reflection Bragg coherent diffractive imaging (MBCDI) shows that implantation induced strain is in fact heterogeneous at the nanoscale, suggesting that there is a non-uniform distribution of defects, an observation that is not fully captured by micro-beam Laue diffraction. At the surface, MBCDI and high-resolution electron back-scattered diffraction (HR-EBSD) strain measurements agree quite well in terms of this clustering/non-uniformity of the strain distribution. However, MBCDI reveals that the heterogeneity at greater depths in the sample is much larger than at the surface. This combination of techniques provides a powerful method for detailed investigation of the microstructural damage caused by ion bombardment, and more generally of strain related phenomena in microvolumes that are inaccessible via any other technique.
X-ray photoelectron spectroscopy (XPS) and resonant x-ray emission spectroscopy (RXES) measurements of pellet and thin film forms of TiO$_2$ with implanted Fe ions are presented and discussed. The findings indicate that Fe-implantation in a TiO$_2$ pellet sample induces heterovalent cation substitution (Fe$^{2+}rightarrow$ Ti$^{4+}$) beneath the surface region. But in thin film samples, the clustering of Fe atoms is primarily detected. In addition to this, significant amounts of secondary phases of Fe$^{3+}$ are detected on the surface of all doped samples due to oxygen exposure. These experimental findings are compared with density functional theory (DFT) calculations of formation energies for different configurations of structural defects in the implanted TiO$_2$:Fe system. According to our calculations, the clustering of Fe-atoms in TiO$_2$:Fe thin films can be attributed to the formation of combined substitutional and interstitial defects. Further, the differences due to Fe doping in pellet and thin film samples can ultimately be attributed to different surface to volume ratios.
Magneto-ionic control of magnetic properties through ionic migration has shown promise in enabling new functionalities in energy-efficient spintronic devices. In this work, we demonstrate the effect of helium ion irradiation and oxygen implantation on magneto-ionically induced exchange bias effect in Gd/Ni$_{0.33}$Co$_{0.67}$O heterostructures. Irradiation using $He^+$ leads to an expansion of the Ni$_{0.33}$Co$_{0.67}$O lattice due to strain relaxation. At low He+ fluence ($leq$ 2$times$10$^{14}$ ions cm$^{-2}$), the redox-induced interfacial magnetic moment initially increases, owing to enhanced oxygen migration. At higher fluence, the exchange bias is suppressed due to reduction of pinned uncompensated interfacial Ni$_{0.33}$Co$_{0.67}$O spins. For oxygen implanted samples, an initial lattice expansion below a dose of 5$times$10$^{15}$ cm$^{-2}$ is subsequently dominated at higher dose by a lattice contraction and phase segregation into NiO and CoO-rich phases, which in turn alters the exchange bias. These results highlight the possibility of ion irradiation and implantation as an effective means to tailor magneto-ionic effects.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا