Do you want to publish a course? Click here

ASCR/HEP Exascale Requirements Review Report

72   0   0.0 ( 0 )
 Added by Salman Habib
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

This draft report summarizes and details the findings, results, and recommendations derived from the ASCR/HEP Exascale Requirements Review meeting held in June, 2015. The main conclusions are as follows. 1) Larger, more capable computing and data facilities are needed to support HEP science goals in all three frontiers: Energy, Intensity, and Cosmic. The expected scale of the demand at the 2025 timescale is at least two orders of magnitude -- and in some cases greater -- than that available currently. 2) The growth rate of data produced by simulations is overwhelming the current ability, of both facilities and researchers, to store and analyze it. Additional resources and new techniques for data analysis are urgently needed. 3) Data rates and volumes from HEP experimental facilities are also straining the ability to store and analyze large and complex data volumes. Appropriately configured leadership-class facilities can play a transformational role in enabling scientific discovery from these datasets. 4) A close integration of HPC simulation and data analysis will aid greatly in interpreting results from HEP experiments. Such an integration will minimize data movement and facilitate interdependent workflows. 5) Long-range planning between HEP and ASCR will be required to meet HEPs research needs. To best use ASCR HPC resources the experimental HEP program needs a) an established long-term plan for access to ASCR computational and data resources, b) an ability to map workflows onto HPC resources, c) the ability for ASCR facilities to accommodate workflows run by collaborations that can have thousands of individual members, d) to transition codes to the next-generation HPC platforms that will be available at ASCR facilities, e) to build up and train a workforce capable of developing and using simulations and analysis to support HEP scientific research on next-generation systems.



rate research

Read More

85 - Eduardo Rodrigues 2019
The Scikit-HEP project is a community-driven and community-oriented effort with the aim of providing Particle Physics at large with a Python scientific toolset containing core and common tools. The project builds on five pillars that embrace the major topics involved in a physicists analysis work: datasets, data aggregations, modelling, simulation and visualisation. The vision is to build a user and developer community engaging collaboration across experiments, to emulate scikit-learns unified interface with Astropys embrace of third-party packages, and to improve discoverability of relevant tools.
118 - S.V. Chekanov , E. May , K. Strand 2013
A new data format for Monte Carlo (MC) events, or any structural data, including experimental data, is discussed. The format is designed to store data in a compact binary form using variable-size integer encoding as implemented in the Googles Protocol Buffers package. This approach is implemented in the ProMC library which produces smaller file sizes for MC records compared to the existing input-output libraries used in high-energy physics (HEP). Other important features of the proposed format are a separation of abstract data layouts from concrete programming implementations, self-description and random access. Data stored in ProMC files can be written, read and manipulated in a number of programming languages, such C++, JAVA, FORTRAN and PYTHON.
This report, based on the Dark Sectors workshop at SLAC in April 2016, summarizes the scientific importance of searches for dark sector dark matter and forces at masses beneath the weak-scale, the status of this broad international field, the important milestones motivating future exploration, and promising experimental opportunities to reach these milestones over the next 5-10 years.
Quantum ESPRESSO is an open-source distribution of computer codes for quantum-mechanical materials modeling, based on density-functional theory, pseudopotentials, and plane waves, and renowned for its performance on a wide range of hardware architectures, from laptops to massively parallel computers, as well as for the breadth of its applications. In this paper we present a motivation and brief review of the ongoing effort to port Quantum ESPRESSO onto heterogeneous architectures based on hardware accelerators, which will overcome the energy constraints that are currently hindering the way towards exascale computing.
The last decade witnessed an increasing interest in axions and axion-like particles with many theoretical works published and many new experimental proposals that started a real race towards their discovery. This paper is the Conceptual Design Report of the KLASH (KLoe magnet for Axion SearcH) experiment at the Laboratori Nazionali di Frascati (LNF). The idea of this experiment has been stimulated by the availability of the large volume superconducting magnet, with a moderate magnetic field of 0.6 T, used in the KLOE detector at the DAFNE collider. The main conclusion we draw from this report is the possibility to build and put in operation at LNF in 2-3 years a large haloscope with the sensitivity to KSVZ axions in the low mass range between 0.2 and 1 $mu$eV, complementary to that of other experiments. Timeline and cost are competitive with respect to other proposals in the same mass region thanks to the availability of most of the infrastructure, in particular the superconducting magnet and the cryogenics plant.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا