Twisted bialgebroids versus bialgebroids from a Drinfeld twist


Abstract in English

Bialgebroids (resp. Hopf algebroids) are bialgebras (Hopf algebras) over noncommutative rings. Drinfeld twist techniques are particularly useful in the (deformation) quantization of Lie algebras as well as underlying module algebras (=quantum spaces). Smash product construction combines these two into the new algebra which, in fact, does not depend on the twist. However, we can turn it into bialgebroid in the twist dependent way. Alternatively, one can use Drinfeld twist techniques in a category of bialgebroids. We show that both techniques indicated in the title: twisting of a bialgebroid or constructing a bialgebroid from the twisted bialgebra give rise to the same result in the case of normalized cocycle twist. This can be useful for better description of a quantum deformed phase space. We argue that within this bialgebroid framework one can justify the use of deformed coordinates (i.e. spacetime noncommutativity) which are frequently postulated in order to explain quantum gravity effects.

Download