Role of nonlocal probes of thermalization for a strongly interacting non-Abelian plasma


Abstract in English

We use a holographic method to investigate thermalization of a boost-invariant strongly interacting non-Abelian plasma. Boundary sourcing, a distorsion of the boundary metric, is employed to drive the system far from equilibrium. Thermalization is analyzed through nonlocal probes: the equal-time two-point correlation function of large conformal dimension operators in the boundary theory, and Wilson loops of different shapes. We study the dependence of the thermalization time on the size of the probes, and compare the results to the ones obtained using local observables: the onset of thermalization is first observed at short distances.

Download