Do you want to publish a course? Click here

WISH VI. Constraints on UV and X-ray irradiation from a survey of hydrides in low- to high-mass YSOs

75   0   0.0 ( 0 )
 Added by Arnold O. Benz
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

Hydrides are simple compounds containing one or a few hydrogen atoms bonded to a heavier atom. They are fundamental precursor molecules in cosmic chemistry and many hydride ions have become observable in high quality for the first time thanks to the Herschel Space Observatory. Ionized hydrides, such as CH+ and OH+, and also HCO+ that affect the chemistry of molecules such as water, provide complementary information on irradiation by far UV (FUV) or X-rays and gas temperature. The targeted lines of CH+, OH+, H2O+, C+ and CH are detected mostly in blue-shifted absorption. H3O+ and SH+ are detected in emission and only toward some high-mass objects. The observed line parameters and correlations suggest two different origins, related to gas entrained by the outflows and to the circumstellar envelope. The column density ratios of CH+/OH+ are estimated from chemical slab models, assuming that the H2 density is given by the specific density model of each object at the beam radius. For the low-mass YSOs the observed ratio can be reproduced for an FUV flux of 2-400 times the ISRF at the location of the molecules. In two high-mass objects, the UV flux is 20-200 times the ISRF derived from absorption lines, and 300-600 ISRF using emission lines. If the FUV flux required for low-mass objects originates at the central protostar, a substantial FUV luminosity, up to 1.5 L_sun, is required. There is no molecular evidence for X-ray induced chemistry in the low-mass objects on the observed scales of a few 1000 AU. For high-mass regions, the FUV flux required to produce the observed molecular ratios is smaller than the unattenuated flux expected from the central object(s) at the Herschel beam radius. This is consistent with an FUV flux reduced by circumstellar extinction or by bloating of the protostar.



rate research

Read More

Water probes the dynamics in young stellar objects (YSOs) effectively, especially shocks in molecular outflows. It is a key molecule for exploring whether the physical properties of low-mass protostars can be extrapolated to massive YSOs. As part of the WISH key programme, we investigate the dynamics and the excitation conditions of shocks along the outflow cavity wall as function of source luminosity. Velocity-resolved Herschel-HIFI spectra of the H2O 988, 752, 1097 GHz and 12CO J=10-9, 16-15 lines were analysed for 52 YSOs with bolometric luminosities (L_bol) ranging from <1 to >10^5 L_sun. The profiles of the H2O lines are similar, indicating that they probe the same gas. We see two main Gaussian emission components in all YSOs: a broad component associated with non-dissociative shocks in the outflow cavity wall (cavity shocks) and a narrow component associated with quiescent envelope material. More than 60% of the total integrated intensity of the H2O lines (L_H2O) comes from the cavity shock component. The H2O line widths are similar for all YSOs, whereas those of 12CO 10-9 increase slightly with L_bol. The excitation analysis of the cavity shock component, performed with the non-LTE radiative transfer code RADEX, shows stronger 752 GHz emission for high-mass YSOs, likely due to pumping by an infrared radiation field. As previously found for CO, a strong correlation with slope unity is measured between log(L_H2O) and log(L_bol), which can be extrapolated to extragalactic sources. We conclude that the broad component of H2O and high-J CO lines originate in shocks in the outflow cavity walls for all YSOs, whereas lower-J CO transitions mostly trace entrained outflow gas. The higher UV field and turbulent motions in high-mass objects compared to their low-mass counterparts may explain the slightly different kinematical properties of 12CO 10-9 and H2O lines from low- to high-mass YSOs.
The X-ray light-curves of the recurring outbursts observed in low-mass X-ray binaries provide strong test beds for constraining (still) poorly understood disc-accretion processes. These light-curves act as a powerful diagnostic to probe the physics behind the mechanisms driving mass inflow and outflow in these binary systems. We have thus developed an innovative methodology, combining a foundation of Bayesian statistics, observed X-ray light-curves, and accretion disc theory. With this methodology, we characterize the angular-momentum (and mass) transport processes in an accretion disc, as well as the properties of the X-ray irradiation-heating that regulates the decay from outburst maximum in low-mass X-ray transients. We recently applied our methodology to the Galactic black-hole low-mass X-ray binary population, deriving from their lightcurves the first-ever quantitative measurements of the $alpha$-viscosity parameter in these systems citep{tetarenko2018}. In this paper, we continue the study of these binaries, using Bayesian methods to investigate the X-ray irradiation of their discs during outbursts of strong accretion. We find that the predictions of the disc-instability model, assuming a source of X-ray irradiation proportional to the central accretion rate throughout outburst, do not adequately describe the later stages of BH-LMXB outburst light-curves. We postulate that the complex and varied light-curve morphology observed across the population is evidence for irradiation that varies in time and space within the disc, throughout individual transient outbursts. Lastly, we demonstrate the robustness of our methodology, by accurately reproducing the synthetic model light-curves computed from numerical codes built to simulate accretion flows in binary systems.
535 - M. Tafalla , R. Liseau , B. Nisini 2013
(Abridged) We present a survey of the water emission in a sample of more than 20 outflows from low mass young stellar objects with the goal of characterizing the physical and chemical conditions of the emitting gas. We have used the HIFI and PACS instruments on board the Herschel Space Observatory to observe the two fundamental lines of ortho-water at 557 and 1670 GHz. These observations were part of the Water In Star-forming regions with Herschel (WISH) key program, and have been complemented with CO and H2 data. We find that the emission from water has a different spatial and velocity distribution from that of the J=1-0 and 2-1 transitions of CO, but it has a similar spatial distribution to H2, and its intensity follows the H2 intensity derived from IRAC images. This suggests that water traces the outflow gas at hundreds of kelvins responsible for the H2 emission, and not the component at tens of kelvins typical of low-J CO emission. A warm origin of the water emission is confirmed by a remarkable correlation between the intensities of the 557 and 1670 GHz lines, which also indicates the emitting gas has a narrow range of excitations. A non-LTE radiative transfer analysis shows that while there is some ambiguity on the exact combination of density and temperature values, the gas thermal pressure nT is constrained within less than a factor of 2. The typical nT over the sample is 4 10^{9} cm^{-3}K, which represents an increase of 10^4 with respect to the ambient value. The data also constrain within a factor of 2 the water column density. When this quantity is combined with H2 column densities, the typical water abundance is only 3 10^{-7}, with an uncertainty of a factor of 3. Our data challenge current C-shock models of water production due to a combination of wing-line profiles, high gas compressions, and low abundances.
Close binary systems provide an excellent tool to determine stellar parameters such as radii and masses with a high degree of precision. Due to the high rotational velocities, most of these systems exhibit strong signs of magnetic activity, which has been postulated to be the underlying reason for radius inflation in many of the components. We aim to extend the sample of low-mass binary systems with well-known X-ray properties. For this, we analyze data from a singular XMM-Newton pointing of the close, low-mass eclipsing binary system BX Tri. The UV light curve is modeled with the eclipsing binary modeling tool PHOEBE and data acquired with the EPIC cameras is analyzed to search for hints of orbital modulation. We find clear evidence of orbital modulation in the UV light curve and show that PHOEBE is fully capable of modeling data within this wavelength range. Comparison to a theoretical flux prediction based on PHOENIX models shows that the majority of UV emission is of photospheric origin. While the X-ray light curve does exhibit strong variations, the signal-to-noise ratio of the observation is insufficient for a clear detection of signs of orbital modulation. There is evidence of a Neupert-like correlation between UV and X-ray data.
X-ray spectral analysis of quiescent low-mass X-ray binaries (LMXBs) has been one of the most common tools to measure the radius of neutron stars (NSs) for over a decade. So far, this method has been mainly applied to NSs in globular clusters, primarily because of their well-constrained distances. Here, we study Chandra data of seven transient LMXBs in the Galactic plane in quiescence to investigate the potential of constraining the radius (and mass) of the NSs inhabiting these systems. We find that only two of these objects had X-ray spectra of sufficient quality to obtain reasonable constraints on the radius, with the most stringent being an upper limit of $Rlesssim$14.5 km for EXO 0748-676 (for assumed ranges for mass and distance). Using these seven sources, we also investigate systematic biases on the mass/radius determination; for Aql X-1 we find that omitting a power-law spectral component when it does not seem to be required by the data, results in peculiar trends in the obtained radius with changing mass and distance. For EXO 0748-676 we find that a slight variation in the lower limit of the energy range chosen for the fit leads to systematically different masses and radii. Finally, we simulated Athena spectra and found that some of the biases can be lifted when higher quality spectra are available and that, in general, the search for constraints on the equation of state of ultra-dense matter via NS radius and mass measurements may receive a considerable boost in the future.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا