Do you want to publish a course? Click here

Using radio stars to link the Gaia and VLBI reference frames

86   0   0.0 ( 0 )
 Added by Zinovy Malkin
 Publication date 2016
  fields Physics
and research's language is English
 Authors Zinovy Malkin




Ask ChatGPT about the research

A possible method for linking the optical Gaia Celestial Reference Frame (GCRF) to the VLBI-based International Celestial Reference Frame (ICRF) is to use radio stars in a manner similar to that in the linking of the Hipparcos Celestial Reference Frame (HCRF) to ICRF. In this work, an obtainable accuracy of the orientation angles between GCRF and ICRF frames was estimated by Monte Carlo simulation. If the uncertainties in the radio star positions obtained by VLBI are in the range of 0.1-4 mas and those obtained by Gaia are in the range of 0.005-0.4 mas, the orientation angle uncertainties are 0.018-0.72 mas if 46 radio stars are used, 0.013-0.51 mas if 92 radio stars are used, and 0.010-0.41~mas if 138 radio stars are used. The general conclusion from this study is that a properly organized VLBI programme for radio star observation with a reasonable load on the VLBI network can allow for the realization of GCRF-ICRF link with an error of about 0.1 mas.



rate research

Read More

92 - Zinovy Malkin 2016
The current state of the link problem between radio and optical celestial reference frames is considered. The main objectives of the investigations in this direction during the next few years are the preparation of a comparison and the mutual orientation and rotation between the optical {it Gaia} Celestial Reference Frame (GCRF) and the 3rd generation radio International Celestial Reference Frame (ICRF3), obtained from VLBI observations. Both systems, ideally, should be a realization of the ICRS (International Celestial Reference System) at micro-arcsecond level accuracy. Therefore, the link accuracy between the ICRF and GCRF should be obtained with similar error level, which is not a trivial task due to relatively large systematic and random errors in source positions at different frequency bands. In this paper, a brief overview of recent work on the GCRF--ICRF link is presented. Additional possibilities to improve the GCRF--ICRF link accuracy are discussed. The suggestion is made to use astrometric radio sources with optical magnitude to 20$^m$ rather than to 18$^m$ as currently planned for the GCRF--ICRF link. In addition, the use of radio stars is also a prospective method to obtain independent and accurate orientation between the Gaia frame and the ICRF.
58 - Lennart Lindegren 2019
Positions and proper motions of Gaia sources are expressed in a reference frame that ideally should be non-rotating relative to distant extragalactic objects, coincident with the International Celestial Reference System (ICRS), and consistent across all magnitudes. For sources fainter than 16th magnitude this is achieved thanks to Gaias direct observations of quasars. At brighter magnitudes it is difficult to validate the quality of the reference frame due to the scarcity of comparison data. This paper examines the use of VLBI observations of radio stars to determine the spin and orientation of the bright reference frame of Gaia. Simultaneous estimation of the six spin and orientation parameters makes optimal use of VLBI data and makes it possible to include even single-epoch VLBI observations in the solution. The method is applied to Gaia Data Release 2 (DR2) using published VLBI data for 41 radio stars. Results for the 26 best-fitting sources indicate that the bright reference frame of Gaia DR2 is rotating relative to the faint quasars at a rate of about 0.1 mas/yr, significant at 2-sigma level. This supports a similar conclusion based on a comparison with stellar positions in the Hipparcos frame. The accuracy is currently limited by the small number of radio sources used, by uncertainties in the Gaia DR2 proper motions, and by the astrophysical nature of the radio stars. While the origin of the indicated rotation is understood and can be avoided in future data releases, it remains important to validate the bright reference frame of Gaia by independent observations. This can be achieved using VLBI astrometry, which may require re-observing the old sample of radio stars as well as measuring new objects. The unique historical value of positional measurements is stressed and VLBI observers are urged to ensure that relevant positional information is preserved for the future.
89 - Zinovy Malkin 2018
The link problem between radio (VLBI/ICRF) and optical (Gaia/GCRF) celestial reference frames is analyzed. Both systems should be a realization of the ICRS (International Celestial Reference System) at microarcsecond level of accuracy. Therefore, the link between the ICRF and GCRF should be obtained with similar accuracy, which is not a trivial task due to relatively large systematic and random errors in source positions at different frequency bands. In this presentation, additional possibilities to improve the GCRF-ICRF link accuracy are discussed. In particular, a possibility to increase the number of ICRF and GCRF common objects is considered using advanced scheduling of the regular IVS sessions such as R1 and R4. It is shown that inclusion of supplement prospective southern sources in these sessions allows enriching southern ICRF zone without noticeable loss of accuracy of geodetic results. Another topic discussed in this presentation is using the correlations between radio source coordinates, which can impact the orientation angles between two frames at a level of a few tens of microarcseconds.
In this paper we outline several problems related to the realization of the international celestial and terrestrial reference frames ICRF and ITRF at the millimeter level of accuracy, with emphasis on ICRF issues. The main topics considered are: analysis of the current status of the ICRF, mutual impact of ICRF and ITRF, and some considerations for future ICRF realizations.
Between 1997 and 2004 several observing runs were conducted mainly with the CTIO 0.9 m to image ICRF counterparts (mostly QSOs) in order to determine accurate optical positions. Contemporary to these deep CCD images the same fields were observed with the US Naval Observatory (USNO) astrograph in the same bandpass. They provide accurate positions on the Hipparcos/Tycho-2 system for stars in the 10 to 16 magnitude range used as reference stars for the deep CCD imaging data. Here we present final optical position results of 413 sources based on reference stars obtained by dedicated astrograph observations which were reduced following 2 different procedures. These optical positions are compared to radio VLBI positions. The current optical system is not perfectly aligned to the ICRF radio system with rigid body rotation angles of 3 to 5 mas (= 3 sigma level) found between them for all 3 axes. Furthermore, statistically, the optical minus radio position differences are found to exceed the total, combined, known errors in the observations. Systematic errors in the optical reference star positions as well as physical offsets between the centers of optical and radio emissions are both identified as likely causes. A detrimental, astrophysical, random noise (DARN) component is postulated to be on about the 10 mas level. If confirmed by future observations, this could severely limit the Gaia to ICRF reference frame alignment accuracy to an error of about 0.5 mas per coordinate axis with the current number of sources envisioned to provide the link. A list of 36 ICRF sources without the detection of an optical counterpart to a limiting magnitude of about R=22 is provided as well.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا