Do you want to publish a course? Click here

Contact process with temporal disorder

109   0   0.0 ( 0 )
 Added by Thomas Vojta
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate the influence of time-varying environmental noise, i.e., temporal disorder, on the nonequilibrium phase transition of the contact process. Combining a real-time renormalization group, scaling theory, and large scale Monte-Carlo simulations in one and two dimensions, we show that the temporal disorder gives rise to an exotic critical point. At criticality, the effective noise amplitude diverges with increasing time scale, and the probability distribution of the density becomes infinitely broad, even on a logarithmic scale. Moreover, the average density and survival probability decay only logarithmically with time. This infinite-noise critical behavior can be understood as the temporal counterpart of infinite-randomness critical behavior in spatially disordered systems, but with exchanged roles of space and time. We also analyze the generality of our results, and we discuss potential experiments.



rate research

Read More

We investigate the nonequilibrium phase transition in the disordered contact process in the presence of long-range spatial disorder correlations. These correlations greatly increase the probability for finding rare regions that are locally in the active phase while the bulk system is still in the inactive phase. Specifically, if the correlations decay as a power of the distance, the rare region probability is a stretched exponential of the rare region size rather than a simple exponential as is the case for uncorrelated disorder. As a result, the Griffiths singularities are enhanced and take a non-power-law form. The critical point itself is of infinite-randomness type but with critical exponent values that differ from the uncorrelated case. We report large-scale Monte-Carlo simulations that verify and illustrate our theory. We also discuss generalizations to higher dimensions and applications to other systems such as the random transverse-field Ising model, itinerant magnets and the superconductor-metal transition.
We study equilibrium properties of catalytically-activated $A + A to oslash$ reactions taking place on a lattice of adsorption sites. The particles undergo continuous exchanges with a reservoir maintained at a constant chemical potential $mu$ and react when they appear at the neighbouring sites, provided that some reactive conditions are fulfilled. We model the latter in two different ways: In the Model I some fraction $p$ of the {em bonds} connecting neighbouring sites possesses special catalytic properties such that any two $A$s appearing on the sites connected by such a bond instantaneously react and desorb. In the Model II some fraction $p$ of the adsorption {em sites} possesses such properties and neighbouring particles react if at least one of them resides on a catalytic site. For the case of textit{annealed} disorder in the distribution of the catalyst, which is tantamount to the situation when the reaction may take place at any point on the lattice but happens with a finite probability $p$, we provide an exact solution for both models for the interior of an infinitely large Cayley tree - the so-called Bethe lattice. We show that both models exhibit a rich critical behaviour: For the annealed Model I it is characterised by a transition into an ordered state and a re-entrant transition into a disordered phase, which both are continuous. For the annealed Model II, which represents a rather exotic model of statistical mechanics in which interactions of any particle with its environment have a peculiar Boolean form, the transition to an ordered state is always continuous, while the re-entrant transition into the disordered phase may be either continuous or discontinuous, depending on the value of $p$.
122 - F. A. Bagamery 2005
We consider the Ising model on the square lattice with biaxially correlated random ferromagnetic couplings, the critical point of which is fixed by self-duality. The disorder represents a relevant perturbation according to the extended Harris criterion. Critical properties of the system are studied by large scale Monte Carlo simulations. The correlation length critical exponent, u=2.005(5), corresponds to that expected in a system with isotropic correlated long-range disorder, whereas the scaling dimension of the magnetization density, x_m=0.1294(7), is somewhat larger than in the pure system. Conformal properties of the magnetization and energy density profiles are also examined numerically.
88 - D. J. Priour Jr , 2000
We study a one-dimensional chain of corner-sharing triangles with antiferromagnetic Ising interactions along its bonds. Classically, this system is highly frustrated with an extensive entropy at T = 0 and exponentially decaying spin correlations. We show that the introduction of a quantum dynmamics via a transverse magnetic field removes the entropy and opens a gap, but leaves the ground state disordered at all values of the transverse field, thereby providing an analog of the disorder by disorder scenario first proposed by Anderson and Fazekas in their search for resonating valence bond states. Our conclusion relies on exact diagonalization calculations as well as on the analysis of a 14th order series expansion about the large transverse field limit. This test suggests that the series method could be used to search for other instances of quantum disordered states in frustrated transverse field magnets in higher dimensions.
141 - Hyewon Kim , Meesoon Ha , 2017
We propose dynamic scaling in temporal networks with heterogeneous activities and memory, and provide a comprehensive picture for the dynamic topologies of such networks, in terms of the modified activity-driven network model [H. Kim textit{et al.}, Eur. Phys. J. B {bf 88}, 315 (2015)]. Particularly, we focus on the interplay of the time resolution and memory in dynamic topologies. Through the random walk (RW) process, we investigate diffusion properties and topological changes as the time resolution increases. Our results with memory are compared to those of the memoryless case. Based on the temporal percolation concept, we derive scaling exponents in the dynamics of the largest cluster and the coverage of the RW process in time-varying networks. We find that the time resolution in the time-accumulated network determines the effective size of the network, while memory affects relevant scaling properties at the crossover from the dynamic regime to the static one. The origin of memory-dependent scaling behaviors is the dynamics of the largest cluster, which depends on temporal degree distributions. Finally, we conjecture of the extended finite-size scaling ansatz for dynamic topologies and the fundamental property of temporal networks, which are numerically confirmed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا