Do you want to publish a course? Click here

Scattering of a cross-polarized linear wave by a soliton at an optical event horizon in a birefringent nanophotonic waveguide

83   0   0.0 ( 0 )
 Added by Charles Ciret
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

The scattering of a linear wave on an optical event horizon, induced by a cross polarized soliton, is experimentally and numerically investigated in integrated structures. The experiments are performed in a dispersion-engineered birefringent silicon nanophotonic waveguide. In stark contrast with co-polarized waves, the large difference between the group velocity of the two cross-polarized waves enables a frequency conversion almost independent on the soliton wavelength. It is shown that the generated idler is only shifted by 10 nm around 1550 nm over a pump tuning range of 350 nm. Simulations using two coupled full vectorial nonlinear Schrodinger equations fully support the experimental results.



rate research

Read More

The generation of high-intensity optical fields from harmonic-wave photons, interacting via a cross-phase modulation with dark solitons both propagating in a Kerr nonlinear medium, is examined. The focus is on a pump consisting of time-entangled dark-soliton patterns, forming a periodic waveguide along the path of the harmonic-wave probe. It is shown that an increase of the strength of cross-phase modulation respective to the self-phase modulation, favors soliton-mode proliferation in the bound-state spectrum of the trapped harmonic-wave probe. The induced soliton modes, which display the structures of periodic soliton lattices, are not just rich in numbers, they also form a great diversity of population of soliton crystals with a high degree of degeneracy.
We report an experimental observation of the collision between a linear wave propagating in the anomalous dispersion region of an optical fiber and a dark soliton located in the normal dispersion region. This interaction results in the emission of a new frequency component whose wavelength can be predicted using phase-matching arguments. The measured efficiency of this process shows a strong dependency with the soliton grayness and the linear wave wavelength, and is in a good agreement with theory and numerical simulations.
We theoretically investigate the quantum scattering of a single-photon pulse interacting with an ensemble of $Lambda$-type three-level atoms coupled to a one-dimensional waveguide. With an effective non-Hermitian Hamiltonian, we study the collective interaction between the atoms mediated by the waveguide mode. In our scheme, the atoms are randomly placed in the lattice along the axis of the one-dimensional waveguide, which closely corresponds to the practical condition that the atomic positions can not be controlled precisely in experiment. Many interesting optical properties occur in our waveguide-atom system, such as electromagnetically induced transparency (EIT) and optical depth. Moreover, we observe that strong photon-photon correlation with quantum beats can be generated in the off-resonant case, which provides an effective candidate for producing non-classical light in experiment. With remarkable progress in waveguide-emitter system, our scheme may be feasible in the near future.
The image of the emission surrounding the black hole in the center of the Milky Way is predicted to exhibit the imprint of general relativistic (GR) effects, including the existence of a shadow feature and a photon ring of diameter ~50 microarcseconds. Structure on these scales can be resolved by millimeter-wavelength very long baseline interferometry (VLBI). However, strong-field GR features of interest will be blurred at lambda >= 1.3 mm due to scattering by interstellar electrons. The scattering properties are well understood over most of the relevant range of baseline lengths, suggesting that the scattering may be (mostly) invertible. We simulate observations of a model image of Sgr A* and demonstrate that the effects of scattering can indeed be mitigated by correcting the visibilities before reconstructing the image. This technique is also applicable to Sgr A* at longer wavelengths.
We consider a model of a matter-wave laser generating a periodic array of solitary-wave pulses. The system, a general version of which was recently proposed in Ref. [5], is composed of two parallel tunnel-coupled cigar-shaped traps (a reservoir and a lasing cavity), solitons being released through a valve at one edge of the cavity. We report a stable lasing mode accounted for by circulations of a narrow soliton in the cavity, which generates an array of strong pulses (with 1,000 - 10,000 atoms in each, the arrays duty cycle ~ 30%) when the soliton periodically hits the valve.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا