Do you want to publish a course? Click here

Synthesizing Skyrmion Molecules in Fe-Gd Thin Films

89   0   0.0 ( 0 )
 Added by James Lee
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We show that properly engineered amorphous Fe-Gd alloy thin films with perpendicular magnetic anisotropy exhibit room-temperature skyrmion molecules, or a pair of like-polarity, opposite-helicity skyrmions. Magnetic mirror symmetry planes present in the stripe phase, instead of chiral exchange, determine the internal skyrmion structure and the net achirality of the skyrmion phase. Our study shows that stripe domain engineering in amorphous alloy thin films may enable the creation of skyrmion phases with technologically desirable properties.



rate research

Read More

B20 phase magnetic materials, such as FeGe, have been of significant interests in recent years because they enable magnetic skyrmions, which can potentially lead to low energy cost spintronic applications. One major effort in this emerging field is the stabilization of skyrmions at room temperature and zero external magnetic field. We report the growth of phase-pure FeGe epitaxial thin films on Si(111) substrates by ultrahigh vacuum off-axis sputtering. The high crystalline quality of the FeGe films was confirmed by x-ray diffraction and scanning transmission electron microscopy. Hall effect measurements reveal strong topological Hall effect after subtracting out the ordinary and anomalous Hall effects, demonstrating the formation of high density skyrmions in FeGe films between 5 and 275 K. In particular, substantial topological Hall effect was observed at zero magnetic field, showing a robust skyrmion phase without the need of an external magnetic field.
We examine magnetic relaxation in polycrystalline Fe films with strong and weak crystallographic texture. Out-of-plane ferromagnetic resonance (FMR) measurements reveal Gilbert damping parameters of $approx$ 0.0024 for Fe films with thicknesses of 4-25 nm, regardless of their microstructural properties. The remarkable invariance with film microstructure strongly suggests that intrinsic Gilbert damping in polycrystalline Fe is a local property of nanoscale crystal grains, with limited impact from grain boundaries and film roughness. By contrast, the in-plane FMR linewidths of the Fe films exhibit distinct nonlinear frequency dependences, indicating the presence of strong extrinsic damping. To fit our experimental data, we have used a grain-to-grain two-magnon scattering model with two types of correlation functions aimed at describing the spatial distribution of inhomogeneities in the film. However, neither of the two correlation functions is able to reproduce the experimental data quantitatively with physically reasonable parameters. Our finding points to the need to further examine the fundamental impact of film microstructure on extrinsic damping.
The anomalous Hall effect (AHE) is a fundamental spintronic charge-to-charge-current conversion phenomenon and closely related to spin-to-charge-current conversion by the spin Hall effect. Future high-speed spintronic devices will crucially rely on such conversion effects at terahertz (THz) frequencies. Here, we reveal that the AHE remains operative from DC up to 40 THz with a flat frequency response in thin films of three technologically relevant magnetic materials: DyCo$_{5}$, Co$_{32}$Fe$_{68}$ and Gd$_{27}$Fe$_{73}$. We measure the frequency-dependent conductivity-tensor elements ${sigma}_{xx}$ and ${sigma}_{yx}$ and find good agreement with DC measurements. Our experimental findings are fully consistent with ab-initio calculations of ${sigma}_{yx}$ for CoFe and highlight the role of the large Drude scattering rate (~100 THz) of metal thin films, which smears out any sharp spectral features of the THz AHE. Finally, we find that the intrinsic contribution to the THz AHE dominates over the extrinsic mechanisms for the Co$_{32}$Fe$_{68}$ sample. The results imply that the AHE and related effects such as the spin Hall effect are highly promising ingredients of future THz spintronic devices reliably operating from DC to 40 THz and beyond.
Magnetite epitaxial thin films have been prepared by pulsed laser deposition at 340 C on MgO and Si substrates. One key result is that the thin film properties are almost identical to the properties of bulk material. For 40 - 50 nm thick films, the saturation magnetization and conductivity are respectively 453 emu/cm^3 and 225 1/(Ohm cm) at room temperature. The Verwey transition is at 117 K. The Hall effect indicates an electron concentration corresponding to 0.22 electrons per formula unit at room temperature. Normal and anomalous Hall effect both have a negative sign.
Pulsed laser deposition was employed to grow thin films of the Heusler compounds Co_2MnSi and Co_2FeSi. Epitaxial growth was realized both directly on MgO (100) and on a Cr or Fe buffer layer. Structural analysis by x-ray and electron diffraction shows for both materials the ordered L2_1 structure. Bulk magnetization was determined with a SQUID magnetometer. The values agree with the Slater-Pauling rule for half-metallic Heusler compounds. On the films grown directly on the substrate measurements of the Hall effect have been performed. The normal Hall effect is nearly temperature independent and points towards a compensated Fermi surface. The anomalous contribution is found to be dominated by skew scattering. A remarkable sign change of both normal and anomalous Hall coefficients is observed on changing the valence electron count from 29 (Mn) to 30 (Fe).
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا