Do you want to publish a course? Click here

Baryon Loading Efficiency and Particle Acceleration Efficiency of Relativistic Jets: Cases For Low Luminosity BL Lacs

56   0   0.0 ( 0 )
 Added by Yoshiyuki Inoue
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

Relativistic jets launched by supermassive black holes, so-called as active galactic nuclei (AGNs), are known as the most energetic particle accelerators in the universe. However, the baryon loading efficiency onto the jets from the accretion flows and their particle acceleration efficiencies have been veiled in mystery. With the latest data sets, we perform multi-wavelength spectral analysis of quiescent spectra of 13 TeV gamma-ray detected high-frequency-peaked BL Lacs (HBLs) following one-zone static synchrotron-self-Compton (SSC) model. We determine the minimum, cooling break, and maximum electron Lorentz factors following the diffusive shock acceleration (DSA) theory. We find that HBLs have $P_B/P_esim6.3times10^{-3}$ and the radiative efficiency $epsilon_{rm rad,jet}sim6.7times10^{-4}$ where $P_B$ and $P_e$ is the Poynting and electron power, respectively. By assuming 10 leptons per one proton, the jet power relates to the black hole mass as $P_{rm jet}/L_{rm Edd}sim0.18$ where $P_{rm jet}$ and $L_{rm Edd}$ is the jet power and the Eddington luminosity, respectively. Under our model assumptions, we further find that HBLs have the jet production efficiency of $eta_{rm jet}sim1.5$ and the mass loading efficiency of $xi_{rm jet}gtrsim5times10^{-2}$. We also investigate the particle acceleration efficiency in the blazar zone by including the most recent Swift/BAT data. Our samples ubiquitously have the particle acceleration efficiency of $eta_gsim10^{4.5}$, which is inefficient to accelerate particles up to the ultra-high-energy-cosmic-ray (UHECR) regime. This implies that the UHECR acceleration sites should be other than the blazar zones of quiescent low power AGN jets, if one assumes the one-zone SSC model based on the DSA theory.



rate research

Read More

We include a general form for the scattering mean free path in a nonlinear Monte Carlo model of relativistic shock formation and Fermi acceleration. Particle-in-cell (PIC) simulations, as well as analytic work, suggest that relativistic shocks tend to produce short-scale, self-generated magnetic turbulence that leads to a scattering mean free path (mfp) with a stronger momentum dependence than the mfp ~ p dependence for Bohm diffusion. In unmagnetized shocks, this turbulence is strong enough to dominate the background magnetic field so the shock can be treated as parallel regardless of the initial magnetic field orientation, making application to gamma-ray bursts (GRBs), pulsar winds, Type Ibc supernovae, and extra-galactic radio sources more straightforward and realistic. In addition to changing the scale of the shock precursor, we show that, when nonlinear effects from efficient Fermi acceleration are taken into account, the momentum dependence of the mfp has an important influence on the efficiency of cosmic-ray production as well as the accelerated particle spectral shape. These effects are absent in nonrelativistic shocks and do not appear in relativistic shock models unless nonlinear effects are self-consistently described. We show, for limited examples, how the changes in Fermi acceleration translate to changes in the intensity and spectral shape of gamma-ray emission from proton-proton interactions and pion-decay radiation.
75 - A. Botteon , G. Brunetti , D. Ryu 2019
Radio relics in galaxy clusters are giant diffuse synchrotron sources powered in cluster outskirts by merger shocks. Although the relic-shock connection has been consolidated in recent years by a number of observations, the details of the mechanisms leading to the formation of relativistic particles in this environment are still not well understood. The diffusive shock acceleration (DSA) theory is a commonly adopted scenario to explain the origin of cosmic rays at astrophysical shocks, including those in radio relics in galaxy clusters. However, in a few specific cases it has been shown that the energy dissipated by cluster shocks is not enough to reproduce the luminosity of the relics via DSA of thermal particles. Studies based on samples of radio relics are required to further address this limitation of the mechanism. In this paper, we focus on ten well-studied radio relics with underlying shocks observed in the X-rays and calculate the electron acceleration efficiency of these shocks that is necessary to reproduce the observed radio luminosity of the relics. We find that in general the standard DSA cannot explain the origin of the relics if electrons are accelerated from the thermal pool with an efficiency significantly smaller than 10%. Our results show that other mechanisms, such as shock re-acceleration of supra-thermal seed electrons or a modification of standard DSA, are required to explain the formation of radio relics.
In this chapter, we review some features of particle acceleration in astrophysical jets. We begin by describing four observational results relating to the topic, with particular emphasis on jets in active galactic nuclei and parallels between different sources. We then discuss the ways in which particles can be accelerated to high energies in magnetised plasmas, focusing mainly on shock acceleration, second-order Fermi and magnetic reconnection; in the process, we attempt to shed some light on the basic conditions that must be met by any mechanism for the various observational constraints to be satisfied. We describe the limiting factors for the maximum particle energy and briefly discuss multimessenger signals from neutrinos and ultrahigh energy cosmic rays, before describing the journey of jet plasma from jet launch to cocoon with reference to the different acceleration mechanisms. We conclude with some general comments on the future outlook.
163 - Seiji Zenitani 2015
Numerical algorithms to load relativistic Maxwell distributions in particle-in-cell (PIC) and Monte-Carlo simulations are presented. For stationary relativistic Maxwellian, the inverse transform method and the Sobol algorithm are reviewed. To boost particles to obtain relativistic shifted-Maxwellian, two rejection methods are proposed in a physically transparent manner. Their acceptance efficiencies are ${approx}50%$ for generic cases and $100%$ for symmetric distributions. They can be combined with arbitrary base algorithms.
Magnetized jets in GRBs and AGNs are thought to be efficient accelerators of particles, however, the process responsible for the acceleration is still a matter of active debate. In this work, we study the kink-instability in non-rotating force-free jets using first-principle particle-in-cell simulations. We obtain similar overall evolution of the instability as found in MHD simulations. The instability first generates large scale current sheets, which at later times break up into small-scale turbulence. Reconnection in these sheets proceeds in the strong guide field regime, which results in a formation of steep power laws in the particle spectra. Later evolution shows heating of the plasma, which is driven by small-amplitude turbulence induced by the kink instability. These two processes energize particles due to a combination of ideal and non-ideal electric fields.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا