We study semiclassical resonances generated by homoclinic trapped sets. First, under some general assumptions, we prove that there is no resonance in a region below the real axis. Then, we obtain a quantization rule and the asymptotic expansion of the resonances when there is a finite number of homoclinic trajectories. The same kind of results is proved for homoclinic sets of maximal dimension. Next, we generalize to the case of homoclinic/heteroclinic trajectories and we study the three bump case. In all these settings, the resonances may either accumulate on curves or form clouds. We also describe the corresponding resonant states.