Do you want to publish a course? Click here

Do We Really Need to Collect Millions of Faces for Effective Face Recognition?

83   0   0.0 ( 0 )
 Added by Tal Hassner
 Publication date 2016
and research's language is English




Ask ChatGPT about the research

Face recognition capabilities have recently made extraordinary leaps. Though this progress is at least partially due to ballooning training set sizes -- huge numbers of face images downloaded and labeled for identity -- it is not clear if the formidable task of collecting so many images is truly necessary. We propose a far more accessible means of increasing training data sizes for face recognition systems. Rather than manually harvesting and labeling more faces, we simply synthesize them. We describe novel methods of enriching an existing dataset with important facial appearance variations by manipulating the faces it contains. We further apply this synthesis approach when matching query images represented using a standard convolutional neural network. The effect of training and testing with synthesized images is extensively tested on the LFW and IJB-A (verification and identification) benchmarks and Janus CS2. The performances obtained by our approach match state of the art results reported by systems trained on millions of downloaded images.



rate research

Read More

Visual Dialog involves understanding the dialog history (what has been discussed previously) and the current question (what is asked), in addition to grounding information in the image, to generate the correct response. In this paper, we show that co-attention models which explicitly encode dialog history outperform models that dont, achieving state-of-the-art performance (72 % NDCG on val set). However, we also expose shortcomings of the crowd-sourcing dataset collection procedure by showing that history is indeed only required for a small amount of the data and that the current evaluation metric encourages generic replies. To that end, we propose a challenging subset (VisDialConv) of the VisDial val set and provide a benchmark of 63% NDCG.
Compared with cheap addition operation, multiplication operation is of much higher computation complexity. The widely-used convolutions in deep neural networks are exactly cross-correlation to measure the similarity between input feature and convolution filters, which involves massive multiplications between float values. In this paper, we present adder networks (AdderNets) to trade these massive multiplications in deep neural networks, especially convolutional neural networks (CNNs), for much cheaper additions to reduce computation costs. In AdderNets, we take the $ell_1$-norm distance between filters and input feature as the output response. The influence of this new similarity measure on the optimization of neural network have been thoroughly analyzed. To achieve a better performance, we develop a special back-propagation approach for AdderNets by investigating the full-precision gradient. We then propose an adaptive learning rate strategy to enhance the training procedure of AdderNets according to the magnitude of each neurons gradient. As a result, the proposed AdderNets can achieve 74.9% Top-1 accuracy 91.7% Top-5 accuracy using ResNet-50 on the ImageNet dataset without any multiplication in convolution layer. The codes are publicly available at: https://github.com/huaweinoah/AdderNet.
The common implementation of face recognition systems as a cascade of a detection stage and a recognition or verification stage can cause problems beyond failures of the detector. When the detector succeeds, it can detect faces that cannot be recognized, no matter how capable the recognition system. Recognizability, a latent variable, should therefore be factored into the design and implementation of face recognition systems. We propose a measure of recognizability of a face image that leverages a key empirical observation: an embedding of face images, implemented by a deep neural network trained using mostly recognizable identities, induces a partition of the hypersphere whereby unrecognizable identities cluster together. This occurs regardless of the phenomenon that causes a face to be unrecognizable, it be optical or motion blur, partial occlusion, spatial quantization, poor illumination. Therefore, we use the distance from such an unrecognizable identity as a measure of recognizability, and incorporate it in the design of the over-all system. We show that accounting for recognizability reduces error rate of single-image face recognition by 58% at FAR=1e-5 on the IJB-C Covariate Verification benchmark, and reduces verification error rate by 24% at FAR=1e-5 in set-based recognition on the IJB-C benchmark.
Recently, Yuan et al. (2016) have shown the effectiveness of using Long Short-Term Memory (LSTM) for performing Word Sense Disambiguation (WSD). Their proposed technique outperformed the previous state-of-the-art with several benchmarks, but neither the training data nor the source code was released. This paper presents the results of a reproduction study of this technique using only openly available datasets (GigaWord, SemCore, OMSTI) and software (TensorFlow). From them, it emerged that state-of-the-art results can be obtained with much less data than hinted by Yuan et al. All code and trained models are made freely available.
In this work, we attempt to address the following problem: Given a large number of unlabeled face images, cluster them into the individual identities present in this data. We consider this a relevant problem in different application scenarios ranging from social media to law enforcement. In large-scale scenarios the number of faces in the collection can be of the order of hundreds of million, while the number of clusters can range from a few thousand to millions--leading to difficulties in terms of both run-time complexity and evaluating clustering and per-cluster quality. An efficient and effective Rank-Order clustering algorithm is developed to achieve the desired scalability, and better clustering accuracy than other well-known algorithms such as k-means and spectral clustering. We cluster up to 123 million face images into over 10 million clusters, and analyze the results in terms of both external cluster quality measures (known face labels) and internal cluster quality measures (unknown face labels) and run-time. Our algorithm achieves an F-measure of 0.87 on a benchmark unconstrained face dataset (LFW, consisting of 13K faces), and 0.27 on the largest dataset considered (13K images in LFW, plus 123M distractor images). Additionally, we present preliminary work on video frame clustering (achieving 0.71 F-measure when clustering all frames in the benchmark YouTube Faces dataset). A per-cluster quality measure is developed which can be used to rank individual clusters and to automatically identify a subset of good quality clusters for manual exploration.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا