A chip-based array of near-identical, pure, heralded single photon sources


Abstract in English

Interference between independent single photons is perhaps the most fundamental interaction in quantum optics. It has become increasingly important as a tool for optical quantum information science, as one of the rudimentary quantum operations, together with photon detection, for generating entanglement between non-interacting particles. Despite this, demonstrations of large-scale photonic networks involving more than two independent sources of quantum light have been limited due to the difficulty in constructing large arrays of high-quality single photon sources. Here, we solve the key challenge, reporting a novel array of more than eighteen near-identical, low-loss, high-purity, heralded single photon sources achieved using spontaneous four-wave mixing (SFWM) on a silica chip. We verify source quality through a series of heralded Hong-Ou-Mandel experiments, and further report the experimental three-photon extension of the entire Hong-Ou-Mandel interference curves, which map out the interference landscape between three independent single photon sources for the first time.

Download