Do you want to publish a course? Click here

Receiver operation characteristics of quantum state discrimination

57   0   0.0 ( 0 )
 Added by Matyas Koniorczyk
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We provide a description of the problem of the discrimination of two quantum states in terms of receiver operation characteristics analysis, a prevalent approach in classical statistics. Receiveroperation characteristics diagrams provide an expressive representation of the problem, in which quantities such as the fidelity and the trace distance also appear explicitly. In addition we introduce an alternative quantum generalization of the classical Bhattacharyya coefficient. We evaluate our quantum Bhattacharyya coefficient for certain situations and describe some of its properties. These properties make it applicable as another possible quantifier of the similarity of quantum states.



rate research

Read More

161 - Lvzhou Li 2020
Discrimination of unitary operations is fundamental in quantum computation and information. A lot of quantum algorithms including the well-known Deutsch-Jozsa algorithm, Simon algorithm, and Grover algorithm can essentially be regarded as discriminating among individual, or sets of unitary operations (oracle operators). The problem of discriminating between two unitary operations $U$ and $V$ can be described as: Given $Xin{U, V}$, determine which one $X$ is. If $X$ is given with multiple copies, then one can design an adaptive procedure that takes multiple queries to $X$ to output the identification result of $X$. In this paper, we consider the problem: How many queries are required for achieving a desired failure probability $epsilon$ of discrimination between $U$ and $V$. We prove in a uniform framework: (i) if $U$ and $V$ are discriminated with bound error $epsilon$ , then the number of queries $T$ must satisfy $Tgeq leftlceilfrac{2sqrt{1-4epsilon(1-epsilon)}}{Theta (U^dagger V)}rightrceil$, and (ii) if they are discriminated with one-sided error $epsilon$, then there is $Tgeq leftlceilfrac{2sqrt{1-epsilon}}{Theta (U^dagger V)}rightrceil$, where $Theta(W)$ denotes the length of the smallest arc containing all the eigenvalues of $W$ on the unit circle.
The sequential unambiguous state discrimination (SSD) of two states prepared in arbitrary prior probabilities is studied, and compared with three strategies that allow classical communication. The deviation from equal probabilities contributes to the success in all the tasks considered. When one considers at least one of the parties succeeds, the protocol with probabilistic cloning is superior to others, which is not observed in the special case with equal prior probabilities. We also investigate the roles of quantum correlations in SSD, and show that the procedure requires discords but rejects entanglement. The left and right discords correspond to the part of information extracted by the first observer and the part left to his successor respectively. Their relative difference is extended by the imbalance of prior probabilities.
In this paper we investigate the connection between quantum information theory and machine learning. In particular, we show how quantum state discrimination can represent a useful tool to address the standard classification problem in machine learning. Previous studies have shown that the optimal quantum measurement theory developed in the context of quantum information theory and quantum communication can inspire a new binary classification algorithm that can achieve higher inference accuracy for various datasets. Here we propose a model for arbitrary multiclass classification inspired by quantum state discrimination, which is enabled by encoding the data in the space of linear operators on a Hilbert space. While our algorithm is quantum-inspired, it can be implemented on classical hardware, thereby permitting immediate applications.
Quantum Stochastic Walks (QSW) allow for a generalization of both quantum and classical random walks by describing the dynamic evolution of an open quantum system on a network, with nodes corresponding to quantum states of a fixed basis. We consider the problem of quantum state discrimination on such a system, and we solve it by optimizing the network topology weights. Finally, we test it on different quantum network topologies and compare it with optimal theoretical bounds.
We study the procedure for sequential unambiguous state discrimination. A qubit is prepared in one of two possible states, and measured by two observers Bob and Charlie sequentially. A necessary condition for the state to be unambiguously discriminated by Charlie is the absence of entanglement between the principal qubit, prepared by Alice, and Bobs auxiliary system. In general, the procedure for both Bob and Charlie to recognize between two nonorthogonal states conclusively relies on the availability of quantum discord which is precisely the quantum dissonance when the entanglement is absent. In Bobs measurement, the left discord is positively correlated with the information extracted by Bob, and the right discord enhances the information left to Charlie. When their product achieves its maximum the probability for both Bob and Charlie to identify the state achieves its optimal value.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا