We study the rapidity evolution of gluon transverse momentum dependent distributions appearing in processes of particle production and show how this evolution changes from small to moderate Bjorken x.
We summarize some of our recent work on non-perturbative transverse momentum dependent (TMD) evolution, emphasizing aspects that are necessary for dealing with moderately low scale processes like semi-inclusive deep inelastic scattering.
We revisit the model-independent decomposition of the gluon correlator, producing T-even and T-odd gluon transverse momentum distributions (TMDs), at leading twist. We propose an expansion of the gluon correlator, using a basis of four tensors (one antisymmetric and three symmetric), which are expressed through generators of the $U(2)$ group acting in the two-dimensional transverse plane. One can do clear interpretations of the two transversity T-odd TMDs with linear polarization of gluons: symmetric and asymmetric under permutation of the transverse spin of the nucleon and the transverse momentum of the gluon. Using light-front wave function (LFWF) representation, we also derive T-even and T-odd gluon TMDs in the nucleon at leading twist. The gluon-three-quark Fock component in the nucleon is considered as bound state of gluon and three-quark core (spectator). The TMDs are constructed as factorized product of two LFWFs and gluonic matrix encoding information about both T-even and T-odd TMDs. In particular, T-odd TMDs arise due to gluon rescattering between the gluon and three-quark spectator. Gluon rescattering effects are parametrized by unknown scalar functions depending on the $x$ and ${bf k}_{perp}$ variables. Our gluon TDMs obey the model-independent Mulders-Rodrigues inequalities. We also derive new sum rules (SRs) involving T-even TMDs. One of the SRs states that the square of the unpolarized TMD is equal to a sum of the squares of three polarized TMDs. Based on the SR derived for T-even gluon TMDs, we make a conjecture that there should two additional SRs involving T-odd gluon TMDs, valid at orders $alpha_s$ and $alpha_s^2$. Then, we check these SRs at small and large values of $x$. We think that our study could serve as useful input for future phenomenological studies of TMDs.
In the QCD evolution of transverse momentum dependent parton distribution and fragmentation functions, the Collins-Soper evolution kernel includes both a perturbative short-distance contribution as well as a large-distance non-perturbative, but strongly universal, contribution. In the past, global fits, based mainly on larger $Q$ Drell-Yan-like processes, have found substantial contributions from non-perturbative regions in the Collins-Soper evolution kernel. In this article, we investigate semi-inclusive deep inelastic scattering measurements in the region of relatively small $Q$, of the order of a few GeV, where sensitivity to non-perturbative transverse momentum dependence may become more important or even dominate the evolution. Using recently available deep inelastic scattering data from the COMPASS experiment, we provide estimates of the regions of coordinate space that dominate in TMD processes when the hard scale is of the order of only a few GeV. We find that distance scales that are much larger than those commonly probed in large $Q$ measurements become important, suggesting that the details of non-perturbative effects in TMD evolution are especially significant in the region of intermediate $Q$. We highlight the strongly universal nature of the non-perturbative component of evolution, and its potential to be tightly constrained by fits from a wide variety of observables that include both large and moderate $Q$. On this basis, we recommend detailed treatments of the non-perturbative component of the Collins-Soper evolution kernel for future TMD studies.
Transverse momentum dependent (TMD) parton distributions in a proton are important in high energy physics from both theoretical and phenomenological points of view. Using the latest RHIC and LHC data on the inclusive soft hadron production in $pp$ and $AA$ collisions at small transverse momenta, we determine the parameters of the initial TMD gluon density, derived in the framework of quark-gluon string model at the low scale $mu_0 sim 1 - 2$ GeV and refine its large-$x$ behaviour using the LHC data on the $t bar t$ production at $sqrt s = 13$ TeV. Then, we apply the Catani-Ciafaloni-Fiorani-Marchesini (CCFM) evolution equation to extend the obtained TMD gluon density to the whole kinematical region. In addition, the complementary TMD valence and sea quark distributions are generated. The latter are evaluated in the approximation where the gluon-to-quark splitting occurs at the last evolution step using the TMD gluon-to-quark splitting function. Several phenomenological applications of the proposed TMD quark and gluon densities to the LHC processes are discussed.