No Arabic abstract
We suggest an analogy between energetic particle and magnetic field observations made by the Voyager 1 spacecraft in the distant heliosheath at 122 AU in August 2012, and those made in the distant geomagnetic tail by the ISEE 3 spacecraft in 1982-1983, despite large differences in the time and distance scales. The analogy suggests that in August, 2012, Voyager 1 may not have moved from the anomalous cosmic ray (ACR)-dominated heliosheath into the interstellar medium but into a region equivalent to the lobes of the geomagnetic tail, composed of heliospheric field lines which have reconnected with the interstellar medium beyond the spacecraft and so are open to the entry of cosmic rays, while heliospheric particles (e.g., ACRs) are free to escape, and which maintain a ~Parker spiral configuration. The heliopause, analogous to the magnetopause forming the outer boundary of the lobes, may then lie beyond this so-called heliocliff. Even if this analogy is incorrect, the remarkable similarities between the energetic particle and magnetic field observations in these very different regions are worth noting.
We report ground truth, 28-3500 keV in-situ ion and 5.2-55 keV remotely sensed ENA measurements from Voyager 2/Low Energy Charged Particle (LECP) detector and Cassini/Ion and Neutral Camera (INCA), respectively, that assess the components of the ion pressure in the heliosheath. In this process, we predict an interstellar neutral hydrogen density of ~0.12 cm-3 and an interstellar magnetic field strength of ~0.5 nT upstream of the heliopause in the direction of V2, i.e. consistent with the measured magnetic field and neutral density measurements at Voyager 1 from August 2012, when the spacecraft entered interstellar space, to date. Further, this analysis results in an estimated heliopause crossing by V2 of ~119 AU, as observed, suggesting that the parameters deduced from the pressure analysis are valid. The shape of the >5.2 keV ion energy spectra play a critical role towards determining the pressure balance and acceleration mechanisms inside the heliosheath.
The large scale features of the solar wind are examined in order to predict small scale features of turbulence in unexplored regions of the heliosphere. The strategy is to examine how system size, or effective Reynolds number, varies, and then how this quantity influences observable statistical properties, including intermittency properties of solar wind turbulence. The expectation based on similar hydrodynamics scalings, is that the kurtosis, of the small scale magnetic field increments, will increase with increasing Reynolds number. Simple theoretical arguments as well as Voyager observations indicate that effective interplanetary turbulence Reynolds number decreases with increasing heliocentric distance. The decrease of scale-dependent magnetic increment kurtosis with increasing heliocentric distance, is verified using a newly refined Voyager magnetic field dataset. We argue that these scalings continue to much smaller heliocentric distances approaching the Alfven critical region, motivating a prediction that the Parker Solar Probe spacecraft will observe increased magnetic field intermittency, stronger current sheets, and more localized dissipation, as its perihelion approaches the critical regions. Similar arguments should be applicable to turbulence in other expanding astrophysical plasmas.
We believe that the extreme solar modulation of 3-60 MeV Galactic electrons measured by Voyager in the heliosheath and the interpretation of this new data in terms of the rigidity dependence of the diffusion coefficient at low rigidities presented in this paper represents a major step in understanding diffusion theory as it applies to energetic particles. This description uses electron spectra measured at 5 different epochs and distances within the heliosheath. The diffusion dependence needed to explain the remarkable solar modulation effects observed for both electrons and higher rigidity protons as one progresses from the heliopause inward by ~25 AU to the termination shock really has two distinct rigidity regimes. Above a rigidity ~Pc the diffusion coefficient has a dependence ~beta P, the modulation is ~P and its magnitude increases linearly with radius in AU according to the integral of dr/K. This integral defines a potential, beta, called the modulation potential, thus explaining the proton variations. At rigidities <Pc, the diffusion coefficient is ~beta and independent of rigidity. The modulation is also independent of rigidity but its magnitude depends on the modulation potential, thus explaining the electron modulation. One needs both electron and proton observations, together, to recognize the physical description of the solar modulation process. For the first time we have been able, using proton data at high rigidities and electron data at low rigidities, to put together a picture of the high and low rigidity diffusion coefficients and how they affect energetic particles in an astrophysical scale environment.
The properties of the turbulence which develops in the outflows of magnetic reconnection have been investigated using self-consistent plasma simulations, in three dimensions. As commonly observed in space plasmas, magnetic reconnection is characterized by the presence of turbulence. Here we provide a direct comparison of our simulations with reported observations of reconnection events in the magnetotail investigating the properties of the electromagnetic field and the energy conversion mechanisms. In particular, simulations show the development of a turbulent cascade consistent with spacecraft observations, statistics of the the dissipation mechanisms in the turbulent outflows similar to the one observed in reconnection jets in the magnetotail, and that the properties of turbulence vary as a function of the distance from the reconnecting X-line.
The magnetometer (MAG) on Voyager 1 (V1) has been sampling the interstellar magnetic field (ISMF) since August 2012. The V1 MAG observations have shown draped ISMF in the very local interstellar medium disturbed occasionally by significant enhancements in magnetic field strength. Using a three-dimensional, data driven, multi-fluid model, we investigated these magnetic field enhancements beyond the heliopause that are supposedly associated with solar transients. To introduce time-dependent effects at the inner boundary at 1 astronomical unit, we used daily averages of the solar wind parameters from the OMNI data set. The model ISMF strength, direction, and proton number density are compared with V1 data beyond the heliopause. The model reproduced the large-scale fluctuations between 2012.652 and 2016.652, including major events around 2012.9 and 2014.6. The model also predicts shocks arriving at V1 around 2017.395 and 2019.502. Another model driven by OMNI data with interplanetary coronal mass ejections (ICMEs) removed at the inner boundary suggests that ICMEs may play a significant role in the propagation of shocks into the interstellar medium.