Do you want to publish a course? Click here

Free energy of formation of clusters of sulphuric acid and water molecules determined by guided disassembly

110   0   0.0 ( 0 )
 Added by Ian Ford
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We evaluate the grand potential of a cluster of two molecular species, equivalent to its free energy of formation from a binary vapour phase, using a nonequilibrium molecular dynamics technique where guide particles, each tethered to a molecule by a harmonic force, move apart to disassemble a cluster into its components. The mechanical work performed in an ensemble of trajectories is analysed using the Jarzynski equality to obtain a free energy of disassembly, a contribution to the cluster grand potential. We study clusters of sulphuric acid and water at 300 K, using a classical interaction scheme, and contrast two modes of guided disassembly. In one, the cluster is broken apart through simple pulling by the guide particles, but we find the trajectories tend to be mechanically irreversible. In the second approach, the guide motion and strength of tethering are modified in a way that prises the cluster apart, a procedure that seems more reversible. We construct a surface representing the cluster grand potential, and identify a critical cluster for droplet nucleation under given vapour conditions. We compare the equilibrium populations of clusters with calculations reported by Henschel et al. [J. Phys. Chem. A 118, 2599 (2014)] based on optimised quantum chemical structures.



rate research

Read More

We present a two-state empirical valence bond (EVB) potential describing interactions between sulphuric acid and water molecules and designed to model proton transfer between them within a classical dynamical framework. The potential has been developed in order to study the properties of molecular clusters of these species, which are thought to be relevant to atmospheric aerosol nucleation. The particle swarm optimisation method has been used to fit the parameters of the EVB model to density functional theory (DFT) calculations. Features of the parametrised model and DFT data are compared and found to be in satisfactory agreement. In particular, it is found that a single sulphuric acid molecule will donate a proton when clustered with four water molecules at 300 K and that this threshold is temperature dependent.
Understanding the phase behaviors of nanoconfined water has driven notable research interests recently. In this work, we examine the structures and thermodynamics of water encapsulated under a graphene cover. We find layered water structures up to ~1000 molecules, which is stabilized by the spatial confinement and pressure induced by the adhesion between graphene cover and substrate. For monolayer encapsulations, we identify both crystalline lattices and defects. Free energy analysis shows that these low- entropy orders are compensated by high formation energies. There exists an order- disorder transition for this condensed phase at ~480-490 K, with a sharp reduction in the number of hydrogen bonds and increase in the entropy. These findings offer fundamental understandings of the encapsulated water, and provide guidance for practical applications with its presence, for example, in the design of nanoelectronic devices.
A compressed knotted ring polymer in a confining cavity is modelled by a knotted lattice polygon confined in a cube in ${mathbb Z}^3$. The GAS algorithm [17] is used to sample lattice polygons of fixed knot type in a confining cube and to estimate the free energy of confined lattice knots. Lattice polygons of knot types the unknot, the trefoil knot, and the figure eight knot, are sampled and the free energies are estimated as functions of the concentration of monomers in the confining cube. The data show that the free energy is a function of knot type at low concentrations, and (mean-field) Flory-Huggins theory [12,15] is used to model the free energy as a function of monomer concentration. The Flory interaction parameter of knotted lattice polygons in ${mathbb Z}^3$ is also estimated.
The properties of the interface between solid and melt are key to solidification and melting, as the interfacial free energy introduces a kinetic barrier to phase transitions. This makes solidification happen below the melting temperature, in out-of-equilibrium conditions at which the interfacial free energy is ill-defined. Here we draw a connection between the atomistic description of a diffuse solid- liquid interface and its thermodynamic characterization. This framework resolves the ambiguities in defining the solid-liquid interfacial free energy above and below the melting temperature. In addition, we introduce a simulation protocol that allows solid-liquid interfaces to be reversibly created and destroyed at conditions relevant for experiments. We directly evaluate the value of the interfacial free energy away from the melting point for a simple but realistic atomic potential, and find a more complex temperature dependence than the constant positive slope that has been generally assumed based on phenomenological considerations and that has been used to interpret experiments. This methodology could be easily extended to the study of other phase transitions, from condensation to precipitation. Our analysis can help reconcile the textbook picture of classical nucleation theory with the growing body of atomistic studies and mesoscale models of solidification.
354 - A. Laio , M. Parrinello 2002
We introduce a novel and powerful method for exploring the properties of the multidimensional free energy surfaces of complex many-body systems by means of a coarse-grained non-Markovian dynamics in the space defined by a few collective coordinates.A characteristic feature of this dynamics is the presence of a history-dependent potential term that, in time, fills the minima in the free energy surface, allowing the efficient exploration and accurate determination of the free energy surface as a function of the collective coordinates. We demonstrate the usefulness of this approach in the case of the dissociation of a NaCl molecule in water and in the study of the conformational changes of a dialanine in solution.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا