No Arabic abstract
We develop a model of particle acceleration in explosive reconnection events in relativistic magnetically-dominated plasmas and apply it to explain gamma-ray flares from the Crab Nebula. The model relies on development of current-driven instabilities on macroscopic scales (not related to plasma skin depths). Using analytical and numerical methods (fluid and particle-in-cell simulations), we study a number of model problems in relativistic magnetically-dominated plasma: (i) we extend Syrovatskys classical model of explosive X-point collapse to magnetically-dominated plasmas; (ii) we consider instability of two-dimensional force-free system of magnetic flux tubes; (iii) we consider merger of two zero total poloidal current magnetic flux tubes. In all cases regimes of spontaneous and driven evolution are investigated. We identify two stages of particle acceleration: (i) fast explosive prompt X-point collapse and (ii) ensuing island merger. The fastest acceleration occurs during the initial catastrophic X-point collapse, with the reconnection electric field of the order of the magnetic field. The explosive stage of reconnection produces non-thermal power-law tails with slopes that depend on the average magnetization. The X-point collapse stage is followed by magnetic island merger that dissipates a large fraction of the initial magnetic energy in a regime of forced reconnection, further accelerating the particles, but proceeds at a slower reconnection rate. Crab flares result from the initial explosive stages of magnetic island mergers of magnetic flux tubes produced in the bulk of nebula at intermediate polar regions. The post-termination shock plasma flow in the wind sectors with mild magnetization naturally generates large-scale highly magnetized structures. Internal kink-like instabilities lead to the formation of macroscopic current-carrying magnetic flux tubes that merge explosively.
We develop a model of gamma-ray flares of the Crab Nebula resulting from the magnetic reconnection events in highly-magnetized relativistic plasma. We first discuss physical parameters of the Crab nebula and review the theory of pulsar winds and termination shocks. We also review the principle points of particle acceleration in explosive reconnection events (Lyutikov et al. 2017a,b). It is required that particles producing flares are accelerated in highly magnetized regions of the nebula. Flares originate from the poleward regions at the base of Crabs polar outflow, where both the magnetization and the magnetic field strength are sufficiently high. The post-termination shock flow develops macroscopic (not related to the plasma properties on the skin-depth scale) kink-type instabilities. The resulting large-scales magnetic stresses drive explosive reconnection events on the light-crossing time of the reconnection region. Flares are produced at the initial stage of the current sheet development, during the X-point collapse. The model has all the ingredients needed for Crab flares: natural formation of highly magnetized regions, explosive dynamics on light travel time, development of high electric fields on macroscopic scales and acceleration of particles to energies well exceeding the average magnetic energy per particle.
The Crab Nebula was formed after the collapse of a massive star about a thousand years ago, leaving behind a pulsar that inflates a bubble of ultra-relativistic electron-positron pairs permeated with magnetic field. The observation of brief but bright flares of energetic gamma rays suggests that pairs are accelerated to PeV energies within a few days; such rapid acceleration cannot be driven by shocks. Here, it is argued that the flares may be the smoking gun of magnetic dissipation in the Nebula. Using 2D and 3D particle-in-cell simulations, it is shown that the observations are consistent with relativistic magnetic reconnection, where pairs are subject to strong radiative cooling. The Crab flares may highlight the importance of relativistic magnetic reconnection in astrophysical sources.
The recent discovery of day-long gamma-ray flares in the Crab Nebula, presumed to be synchrotron emission by PeV (10^{15} eV) electrons in milligauss magnetic fields, presents a strong challenge to particle acceleration models. The observed photon energies exceed the upper limit (~100 MeV) obtained by balancing the acceleration rate and synchrotron radiation losses under standard conditions where the electric field is smaller than the magnetic field. We argue that a linear electric accelerator, operating at magnetic reconnection sites, is able to circumvent this difficulty. Sufficiently energetic electrons have gyroradii so large that their motion is insensitive to small-scale turbulent structures in the reconnection layer and is controlled only by large-scale fields. We show that such particles are guided into the reconnection layer by the reversing magnetic field as they are accelerated by the reconnection electric field. As these electrons become confined within the current sheet, they experience a decreasing perpendicular magnetic field that may drop below the accelerating electric field. This enables them to reach higher energies before suffering radiation losses and hence to emit synchrotron radiation in excess of the 100 MeV limit, providing a natural resolution to the Crab gamma-ray flare paradox.
Particle energization in shear flows is invoked to explain non-thermal emission from the boundaries of relativistic astrophysical jets. Yet, the physics of particle injection, i.e., the mechanism that allows thermal particles to participate in shear-driven acceleration, remains unknown. With particle-in-cell simulations, we study the development of Kelvin-Helmholtz (KH) instabilities seeded by the velocity shear between a relativistic magnetically-dominated electron-positron jet and a weakly magnetized electron-ion ambient plasma. We show that, in their nonlinear stages, KH vortices generate kinetic-scale reconnection layers, which efficiently energize the jet particles, thus providing a first-principles mechanism for particle injection into shear-driven acceleration. Our work lends support to spine-sheath models of jet emission - with a fast core/spine surrounded by a slower sheath - and can explain the origin of radio-emitting electrons at the boundaries of relativistic jets.
Using analytical and numerical methods (fluid and particle-in-cell simulations) we study a number of model problems involving merger of magnetic flux tubes in relativistic magnetically-dominated plasma. Mergers of current-carrying flux tubes (exemplified by the two dimensional `ABC structures) and zero total current magnetic flux tubes are considered. In all cases regimes of spontaneous and driven evolution are investigated. We identify two stages of particle acceleration during flux mergers: (i) fast explosive prompt X-point collapse and (ii) ensuing island merger. The fastest acceleration occurs during the initial catastrophic X-point collapse, with the reconnection electric field of the order of the magnetic field. During the X-point collapse particles are accelerated by charge-starved electric fields, which can reach (and even exceed) values of the local magnetic field. The explosive stage of reconnection produces non-thermal power-law tails with slopes that depend on the average magnetization $sigma$. For plasma magnetization $sigma leq 10^2$ the spectrum power law index is $p> 2$; in this case the maximal energy depends linearly on the size of the reconnecting islands. For higher magnetization, $sigma geq 10^2$, the spectra are hard, $p< 2$, yet the maximal energy $gamma_{max}$ can still exceed the average magnetic energy per particle, $ sim sigma$, by orders of magnitude (if $p$ is not too close to unity). The X-point collapse stage is followed by magnetic island merger that dissipates a large fraction of the initial magnetic energy in a regime of forced magnetic reconnection, further accelerating the particles, but proceeds at a slower reconnection rate.