Do you want to publish a course? Click here

The clustering of massive Primordial Black Holes as Dark Matter: measuring their mass distribution with Advanced LIGO

96   0   0.0 ( 0 )
 Added by Sebastien Clesse
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

The recent detection by Advanced LIGO of gravitational waves (GW) from the merging of a binary black hole system sets new limits on the merging rates of massive primordial black holes (PBH) that could be a significant fraction or even the totality of the dark matter in the Universe. aLIGO opens the way to the determination of the distribution and clustering of such massive PBH. If PBH clusters have a similar density to the one observed in ultra-faint dwarf galaxies, we find merging rates comparable to aLIGO expectations. Massive PBH dark matter predicts the existence of thousands of those dwarf galaxies where star formation is unlikely because of gas accretion onto PBH, which would possibly provide a solution to the missing satellite and too-big-to-fail problems. Finally, we study the possibility of using aLIGO and future GW antennas to measure the abundance and mass distribution of PBH in the range [5 - 200] Msun to 10% accuracy.



rate research

Read More

Although the dark matter is usually assumed to be some form of elementary particle, primordial black holes (PBHs) could also provide some of it. However, various constraints restrict the possible mass windows to $10^{16}$ - $10^{17},$g, $10^{20}$ - $10^{24},$g and $10$ - $10^{3},M_{odot}$. The last possibility is contentious but of special interest in view of the recent detection of black-hole mergers by LIGO/Virgo. PBHs might have important consequences and resolve various cosmological conundra even if they have only a small fraction of the dark-matter density. In particular, those larger than $10^{3},M_{odot}$ could generate cosmological structures through the seed or Poisson effect, thereby alleviating some problems associated with the standard cold dark-matter scenario, and sufficiently large PBHs might provide seeds for the supermassive black holes in galactic nuclei. More exotically, the Planck-mass relics of PBH evaporations or stupendously large black holes bigger than $10^{12},M_{odot}$ could provide an interesting dark component.
We investigate a possibility of primordial black hole (PBH) formation with a hierarchical mass spectrum in multiple phases of inflation. As an example, we find that one can simultaneously realize a mass spectrum which has recently attracted a lot of attention: stellar-mass PBHs ($simmathcal{O}(10)M_odot$) as a possible source of binary black holes detected by LIGO/Virgo collaboration, asteroid-mass ($simmathcal{O}(10^{-12})M_odot$) as a main component of dark matter, and earth-mass ($simmathcal{O}(10^{-5})M_odot$) as a source of ultrashort-timescale events in Optical Gravitational Lensing Experiment microlensing data. The recent refined de Sitter swampland conjecture may support such a multi-phase inflationary scenario with hierarchical mass PBHs as a transition signal of each inflationary phase.
In this paper we present a new scenario where massive Primordial Black Holes (PBH) are produced from the collapse of large curvature perturbations generated during a mild waterfall phase of hybrid inflation. We determine the values of the inflaton potential parameters leading to a PBH mass spectrum peaking on planetary-like masses at matter-radiation equality and producing abundances comparable to those of Dark Matter today, while the matter power spectrum on scales probed by CMB anisotropies agrees with Planck data. These PBH could have acquired large stellar masses today, via merging, and the model passes both the constraints from CMB distortions and micro-lensing. This scenario is supported by Chandra observations of numerous BH candidates in the central region of Andromeda. Moreover, the tail of the PBH mass distribution could be responsible for the seeds of supermassive black holes at the center of galaxies, as well as for ultra-luminous X-rays sources. We find that our effective hybrid potential can originate e.g. from D-term inflation with a Fayet-Iliopoulos term of the order of the Planck scale but sub-planckian values of the inflaton field. Finally, we discuss the implications of quantum diffusion at the instability point of the potential, able to generate a swiss-cheese like structure of the Universe, eventually leading to apparent accelerated cosmic expansion.
We discuss formation of dark matter (DM) mini-halos around primordial black holes (PBHs) and its implication on DM direct detection experiments, including axion searches. Motivated by LIGO observations, we consider $f_{textrm{DM}} simeq 0.01$ as the fraction of DM in PBHs with masses $10 M_{odot} - 70 M_{odot}$. In this case, we expect the presence of dressed PBHs after Milky Way halo formation with mini-halo masses peaked around $M_{textrm{halo}} sim (50-55) M_{textrm{PBH}}$. We analyze the effect of tidal forces acting on dressed PBHs within the Milky Way galaxy. In the solar neighborhood, the mini-halos are resistant against tidal disruption from the mean-field potential of the galaxy and encounters with stars, but they undergo a small level of disruption caused by disk shocking. The presence of mini-halos around LIGO-motivated PBHs today could reduce by half the local dark matter background. High-resolution simulations are encouraged. If the proposed scenario is realized, chances of direct detection of DM would decrease.
We show that a subdominant component of dissipative dark matter resembling the Standard Model can form many intermediate-mass black hole seeds during the first structure formation epoch. We also observe that, in the presence of this matter sector, the black holes will grow at a much faster rate with respect to the ordinary case. These facts can explain the observed abundance of supermassive black holes feeding high-redshift quasars. The scenario will have interesting observational consequences for dark substructures and gravitational wave production.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا