No Arabic abstract
The existence of the maximum likelihood estimate in hierarchical loglinear models is crucial to the reliability of inference for this model. Determining whether the estimate exists is equivalent to finding whether the sufficient statistics vector $t$ belongs to the boundary of the marginal polytope of the model. The dimension of the smallest face $F_t$ containing $t$ determines the dimension of the reduced model which should be considered for correct inference. For higher-dimensional problems, it is not possible to compute $F_{t}$ exactly. Massam and Wang (2015) found an outer approximation to $F_t$ using a collection of sub-models of the original model. This paper refines the methodology to find an outer approximation and devises a new methodology to find an inner approximation. The inner approximation is given not in terms of a face of the marginal polytope, but in terms of a subset of the vertices of $F_t$. Knowing $F_t$ exactly indicates which cell probabilities have maximum likelihood estimates equal to $0$. When $F_t$ cannot be obtained exactly, we can use, first, the outer approximation $F_2$ to reduce the dimension of the problem and, then, the inner approximation $F_1$ to obtain correct estimates of cell probabilities corresponding to elements of $F_1$ and improve the estimates of the remaining probabilities corresponding to elements in $F_2setminus F_1$. Using both real-world and simulated data, we illustrate our results, and show that our methodology scales to high dimensions.
In this paper, we explore a connection between binary hierarchical models, their marginal polytopes and codeword polytopes, the convex hulls of linear codes. The class of linear codes that are realizable by hierarchical models is determined. We classify all full dimensional polytopes with the property that their vertices form a linear code and give an algorithm that determines them.
For statistical analysis of multiway contingency tables we propose modeling interaction terms in each maximal compact component of a hierarchical model. By this approach we can search for parsimonious models with smaller degrees of freedom than the usual hierarchical model, while preserving conditional independence structures in the hierarchical model. We discuss estimation and exacts tests of the proposed model and illustrate the advantage of the proposed modeling with some data sets.
In Chib (1995), a method for approximating marginal densities in a Bayesian setting is proposed, with one proeminent application being the estimation of the number of components in a normal mixture. As pointed out in Neal (1999) and Fruhwirth-Schnatter (2004), the approximation often fails short of providing a proper approximation to the true marginal densities because of the well-known label switching problem (Celeux et al., 2000). While there exist other alternatives to the derivation of approximate marginal densities, we reconsider the original proposal here and show as in Berkhof et al. (2003) and Lee et al. (2008) that it truly approximates the marginal densities once the label switching issue has been solved.
Multivariate distributions are explored using the joint distributions of marginal sample quantiles. Limit theory for the mean of a function of order statistics is presented. The results include a multivariate central limit theorem and a strong law of large numbers. A result similar to Bahadurs representation of quantiles is established for the mean of a function of the marginal quantiles. In particular, it is shown that [sqrt{n}Biggl(frac{1}{n}sum_{i=1}^nphibigl(X_{n:i}^{(1)},...,X_{n:i}^{(d)}bigr)-bar{gamma}Biggr)=frac{1}{sqrt{n}}sum_{i=1}^nZ_{n,i}+mathrm{o}_P(1)] as $nrightarrowinfty$, where $bar{gamma}$ is a constant and $Z_{n,i}$ are i.i.d. random variables for each $n$. This leads to the central limit theorem. Weak convergence to a Gaussian process using equicontinuity of functions is indicated. The results are established under very general conditions. These conditions are shown to be satisfied in many commonly occurring situations.
Two Bayesian models with different sampling densities are said to be marginally equivalent if the joint distribution of observables and the parameter of interest is the same for both models. We discuss marginal equivalence in the general framework of group invariance. We introduce a class of sampling models and establish marginal equivalence when the prior for the nuisance parameter is relatively invariant. We also obtain some robustness properties of invariant statistics under our sampling models. Besides the prototypical example of $v$-spherical distributions, we apply our general results to two examples---analysis of affine shapes and principal component analysis.