Do you want to publish a course? Click here

Testing Interestingness Measures in Practice: A Large-Scale Analysis of Buying Patterns

54   0   0.0 ( 0 )
 Added by Martin Kirchgessner
 Publication date 2016
and research's language is English




Ask ChatGPT about the research

Understanding customer buying patterns is of great interest to the retail industry and has shown to benefit a wide variety of goals ranging from managing stocks to implementing loyalty programs. Association rule mining is a common technique for extracting correlations such as people in the South of France buy rose wine or customers who buy pate also buy salted butter and sour bread. Unfortunately, sifting through a high number of buying patterns is not useful in practice, because of the predominance of popular products in the top rules. As a result, a number of interestingness measures (over 30) have been proposed to rank rules. However, there is no agreement on which measures are more appropriate for retail data. Moreover, since pattern mining algorithms output thousands of association rules for each product, the ability for an analyst to rely on ranking measures to identify the most interesting ones is crucial. In this paper, we develop CAPA (Comparative Analysis of PAtterns), a framework that provides analysts with the ability to compare the outcome of interestingness measures applied to buying patterns in the retail industry. We report on how we used CAPA to compare 34 measures applied to over 1,800 stores of Intermarche, one of the largest food retailers in France.

rate research

Read More

Synonym extraction is an important task in natural language processing and often used as a submodule in query expansion, question answering and other applications. Automatic synonym extractor is highly preferred for large scale applications. Previous studies in synonym extraction are most limited to small scale datasets. In this paper, we build a large dataset with 3.4 million synonym/non-synonym pairs to capture the challenges in real world scenarios. We proposed (1) a new cost function to accommodate the unbalanced learning problem, and (2) a feature learning based deep neural network to model the complicated relationships in synonym pairs. We compare several different approaches based on SVMs and neural networks, and find out a novel feature learning based neural network outperforms the methods with hand-assigned features. Specifically, the best performance of our model surpasses the SVM baseline with a significant 97% relative improvement.
The practical success of deep learning has sparked interest in improving relational table tasks, like data search, with models trained on large table corpora. Existing corpora primarily contain tables extracted from HTML pages, limiting the capability to represent offline database tables. To train and evaluate high-capacity models for applications beyond the Web, we need additional resources with tables that resemble relational database tables. Here we introduce GitTables, a corpus of currently 1.7M relational tables extracted from GitHub. Our continuing curation aims at growing the corpus to at least 20M tables. We annotate table columns in GitTables with more than 2K different semantic types from Schema.org and DBpedia. Our column annotations consist of semantic types, hierarchical relations, range types and descriptions. The corpus is available at https://gittables.github.io. Our analysis of GitTables shows that its structure, content, and topical coverage differ significantly from existing table corpora. We evaluate our annotation pipeline on hand-labeled tables from the T2Dv2 benchmark and find that our approach provides results on par with human annotations. We demonstrate a use case of GitTables by training a semantic type detection model on it and obtain high prediction accuracy. We also show that the same model trained on tables from theWeb generalizes poorly.
As large graph processing emerges, we observe a costly fork-processing pattern (FPP) that is common in many graph algorithms. The unique feature of the FPP is that it launches many independent queries from different source vertices on the same graph. For example, an algorithm in analyzing the network community profile can execute Personalized PageRanks that start from tens of thousands of source vertices at the same time. We study the efficiency of handling FPPs in state-of-the-art graph processing systems on multi-core architectures. We find that those systems suffer from severe cache miss penalty because of the irregular and uncoordinated memory accesses in processing FPPs. In this paper, we propose ForkGraph, a cache-efficient FPP processing system on multi-core architectures. To improve the cache reuse, we divide the graph into partitions each sized of LLC capacity, and the queries in an FPP are buffered and executed on the partition basis. We further develop efficient intra- and inter-partition execution strategies for efficiency. For intra-partition processing, since the graph partition fits into LLC, we propose to execute each graph query with efficient sequential algorithms (in contrast with parallel algorithms in existing parallel graph processing systems) and present an atomic-free query processing by consolidating contending operations to cache-resident graph partition. For inter-partition processing, we propose yielding and priority-based scheduling, to reduce redundant work in processing. Besides, we theoretically prove that ForkGraph performs the same amount of work, to within a constant factor, as the fastest known sequential algorithms in FPP queries processing, which is work efficient. Our evaluations on real-world graphs show that ForkGraph significantly outperforms state-of-the-art graph processing systems with two orders of magnitude speedups.
Understanding the semantics of tables at scale is crucial for tasks like data integration, preparation, and search. Table understanding methods aim at detecting a tables topic, semantic column types, column relations, or entities. With the rise of deep learning, powerful models have been developed for these tasks with excellent accuracy on benchmarks. However, we observe that there exists a gap between the performance of these models on these benchmarks and their applicability in practice. In this paper, we address the question: what do we need for these models to work in practice? We discuss three challenges of deploying table understanding models and propose a framework to address them. These challenges include 1) difficulty in customizing models to specific domains, 2) lack of training data for typical database tables often found in enterprises, and 3) lack of confidence in the inferences made by models. We present SigmaTyper which implements this framework for the semantic column type detection task. SigmaTyper encapsulates a hybrid model trained on GitTables and integrates a lightweight human-in-the-loop approach to customize the model. Lastly, we highlight avenues for future research that further close the gap towards making table understanding effective in practice.
Urban conditions are monitored by a wide variety of sensors that measure several attributes, such as temperature and traffic volume. The correlations of sensors help to analyze and understand the urban conditions accurately. The correlated attribute pattern (CAP) mining discovers correlations among multiple attributes from the sets of sensors spatially close to each other and temporally correlated in their measurements. In this paper, we develop a visualization system for CAP mining and demonstrate analysis of smart city data. Our visualization system supports an intuitive understanding of mining results via sensor locations on maps and temporal changes of their measurements. In our demonstration scenarios, we provide four smart city datasets collected from China and Santander, Spain. We demonstrate that our system helps interactive analysis of smart city data.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا