Gyrokinetic simulations of fusion plasmas using a spectral velocity space representation


Abstract in English

Magnetic confinement fusion reactors suffer severely from heat and particle losses through turbulent transport, which has inspired the construction of ever larger and more expensive reactors. Numerical simulations are vital to their design and operation, but particle collisions are too infrequent for fluid descriptions to be valid. Instead, strongly magnetised fusion plasmas are described by the gyrokinetic equations, a nonlinear integro-differential system for evolving the particle distribution functions in a five-dimensional position and velocity space, and the consequent electromagnetic field. Due to the high dimensionality, simulations of small reactor sections require hundreds of thousands of CPU hours on High Performance Computing platforms. We develop a Hankel-Hermite spectral representation for velocity space that exploits structural features of the gyrokinetic system. The representation exactly conserves discrete free energy in the absence of explicit dissipation, while our Hermite hypercollision operator captures Landau damping with few variables. Calculation of the electromagnetic fields becomes purely local, eliminating inter-processor communication in, and vastly accelerating, searches for linear instabilities. We implement these ideas in SpectroGK, an efficient parallel code. Turbulent fusion plasmas may dissipate free energy through linear phase mixing to fine scales in velocity space, as in Landau damping, or through a nonlinear cascade to fine scales in physical space, as in hydrodynamic turbulence. Using SpectroGK to study saturated electrostatic drift-kinetic turbulence, we find that the nonlinear cascade suppresses linear phase mixing at energetically-dominant scales, so the turbulence is fluid-like. We use this observation to derive Fourier-Hermite spectra for the electrostatic potential and distribution function, and confirm these spectra with simulations.

Download