We study a distributed consensus-based stochastic gradient descent (SGD) algorithm and show that the rate of convergence involves the spectral properties of two matrices: the standard spectral gap of a weight matrix from the network topology and a new term depending on the spectral norm of the sample covariance matrix of the data. This data-dependent convergence rate shows that distributed SGD algorithms perform better on datasets with small spectral norm. Our analysis method also allows us to find data-dependent convergence rates as we limit the amount of communication. Spreading a fixed amount of data across more nodes slows convergence; for asymptotically growing data sets we show that adding more machines can help when minimizing twice-differentiable losses.
This work develops effective distributed strategies for the solution of constrained multi-agent stochastic optimization problems with coupled parameters across the agents. In this formulation, each agent is influenced by only a subset of the entries of a global parameter vector or model, and is subject to convex constraints that are only known locally. Problems of this type arise in several applications, most notably in disease propagation models, minimum-cost flow problems, distributed control formulations, and distributed power system monitoring. This work focuses on stochastic settings, where a stochastic risk function is associated with each agent and the objective is to seek the minimizer of the aggregate sum of all risks subject to a set of constraints. Agents are not aware of the statistical distribution of the data and, therefore, can only rely on stochastic approximations in their learning strategies. We derive an effective distributed learning strategy that is able to track drifts in the underlying parameter model. A detailed performance and stability analysis is carried out showing that the resulting coupled diffusion strategy converges at a linear rate to an $O(mu)-$neighborhood of the true penalized optimizer.
One of the most widely used methods for solving large-scale stochastic optimization problems is distributed asynchronous stochastic gradient descent (DASGD), a family of algorithms that result from parallelizing stochastic gradient descent on distributed computing architectures (possibly) asychronously. However, a key obstacle in the efficient implementation of DASGD is the issue of delays: when a computing node contributes a gradient update, the global model parameter may have already been updated by other nodes several times over, thereby rendering this gradient information stale. These delays can quickly add up if the computational throughput of a node is saturated, so the convergence of DASGD may be compromised in the presence of large delays. Our first contribution is that, by carefully tuning the algorithms step-size, convergence to the critical set is still achieved in mean square, even if the delays grow unbounded at a polynomial rate. We also establish finer results in a broad class of structured optimization problems (called variationally coherent), where we show that DASGD converges to a global optimum with probability $1$ under the same delay assumptions. Together, these results contribute to the broad landscape of large-scale non-convex stochastic optimization by offering state-of-the-art theoretical guarantees and providing insights for algorithm design.
In this paper, we consider a stochastic distributed nonconvex optimization problem with the cost function being distributed over $n$ agents having access only to zeroth-order (ZO) information of the cost. This problem has various machine learning applications. As a solution, we propose two distributed ZO algorithms, in which at each iteration each agent samples the local stochastic ZO oracle at two points with an adaptive smoothing parameter. We show that the proposed algorithms achieve the linear speedup convergence rate $mathcal{O}(sqrt{p/(nT)})$ for smooth cost functions and $mathcal{O}(p/(nT))$ convergence rate when the global cost function additionally satisfies the Polyak--Lojasiewicz (P--L) condition, where $p$ and $T$ are the dimension of the decision variable and the total number of iterations, respectively. To the best of our knowledge, this is the first linear speedup result for distributed ZO algorithms, which enables systematic processing performance improvements by adding more agents. We also show that the proposed algorithms converge linearly when considering deterministic centralized optimization problems under the P--L condition. We demonstrate through numerical experiments the efficiency of our algorithms on generating adversarial examples from deep neural networks in comparison with baseline and recently proposed centralized and distributed ZO algorithms.
In this work, we propose a distributed algorithm for stochastic non-convex optimization. We consider a worker-server architecture where a set of $K$ worker nodes (WNs) in collaboration with a server node (SN) jointly aim to minimize a global, potentially non-convex objective function. The objective function is assumed to be the sum of local objective functions available at each WN, with each node having access to only the stochastic samples of its local objective function. In contrast to the existing approaches, we employ a momentum based single loop distributed algorithm which eliminates the need of computing large batch size gradients to achieve variance reduction. We propose two algorithms one with adaptive and the other with non-adaptive learning rates. We show that the proposed algorithms achieve the optimal computational complexity while attaining linear speedup with the number of WNs. Specifically, the algorithms reach an $epsilon$-stationary point $x_a$ with $mathbb{E}| abla f(x_a) | leq tilde{O}(K^{-1/3}T^{-1/2} + K^{-1/3}T^{-1/3})$ in $T$ iterations, thereby requiring $tilde{O}(K^{-1} epsilon^{-3})$ gradient computations at each WN. Moreover, our approach does not assume identical data distributions across WNs making the approach general enough for federated learning applications.
This paper investigates how to accelerate the convergence of distributed optimization algorithms on nonconvex problems with zeroth-order information available only. We propose a zeroth-order (ZO) distributed primal-dual stochastic coordinates algorithm equipped with powerball method to accelerate. We prove that the proposed algorithm has a convergence rate of $mathcal{O}(sqrt{p}/sqrt{nT})$ for general nonconvex cost functions. We consider solving the generation of adversarial examples from black-box DNNs problem to compare with the existing state-of-the-art centralized and distributed ZO algorithms. The numerical results demonstrate the faster convergence rate of the proposed algorithm and match the theoretical analysis.