No Arabic abstract
We develop methods of computation of the Brauer-Picard groups of fusion categories and apply them to compute such groups for several classes of fusion categories of prime power dimension: representation categories of elementary abelian groups with twisted associativity constraint, extra special p-groups, and the Kac-Paljutkin Hopf algebra. We conclude that many finite groups of Lie type occur as composition factors of the Brauer-Picard groups of pointed fusion categories.
We analyze the action of the Brauer-Picard group of a pointed fusion category on the set of Lagrangian subcategories of its center. Using this action we compute the Brauer-Picard groups of pointed fusion categories associated to several classical finite groups. As an application, we construct new examples of weakly group-theoretical fusion categories.
We classify various types of graded extensions of a finite braided tensor category $cal B$ in terms of its $2$-categorical Picard groups. In particular, we prove that braided extensions of $cal B$ by a finite group $A$ correspond to braided monoidal $2$-functors from $A$ to the braided $2$-categorical Picard group of $cal B$ (consisting of invertible central $cal B$-module categories). Such functors can be expressed in terms of the Eilnberg-Mac~Lane cohomology. We describe in detail braided $2$-categorical Picard groups of symmetric fusion categories and of pointed braided fusion categories.
Let C_n denote the representation category of a finite supergroup generated by purely odd n-dimensional vector space. We compute the Brauer-Picard group BrPic(C_n) of C_n. This is done by identifying BrPic(C_n) with the group of braided tensor autoequivalences of the Drinfeld center of C_n and studying the action of the latter group on the categorical Lagrangian Grassmannian of C_n. We show that this action corresponds to the action of a projective symplectic group on a classical Lagrangian Grassmannian.
We show that braidings on a fusion category $mathcal{C}$ correspond to certain fusion subcategories of the center of $mathcal{C}$ transversal to the canonical Lagrangian algebra. This allows to classify braidings on non-degenerate and group-theoretical fusion categories.
We give a nontrivial lower bound for global dimension of a spherical fusion category.