Do you want to publish a course? Click here

What can the 2008/10 broadband flare of PKS 1502+106 tell us? Nuclear opacity, magnetic fields, and the location of gamma rays

50   0   0.0 ( 0 )
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

Context. The origin of blazar variability, seen from radio up to gamma rays, is still a heavily debated matter and broadband flares offer a unique testbed towards a better understanding of these extreme objects. Such an energetic outburst was detected by Fermi/LAT in 2008 from the blazar PKS 1502+106. The outburst was observed from gamma rays down to radio frequencies. Aims. Through the delay between flare maxima at different radio frequencies, we study the frequency-dependent position of the unit-opacity surface and infer its absolute position with respect to the jet base. This nuclear opacity profile enables the magnetic field tomography of the jet. We also localize the gamma-ray emission region and explore the mechanism producing the flare. Methods. The radio flare of PKS 1502+106 is studied through single-dish flux density measurements at 12 frequencies in the range 2.64 to 226.5 GHz. To quantify it, we employ both a Gaussian process regression and a discrete cross-correlation function analysis. Results. We find that the light curve parameters (flare amplitude and cross-band delays) show a power-law dependence on frequency. Delays decrease with frequency, and the flare amplitudes increase up to about 43 GHz and then decay. This behavior is consistent with a shock propagating downstream the jet. The self-absorbed radio cores are located between about 10 and 4 pc from the jet base and their magnetic field strengths range between 14 and 176 mG, at the frequencies 2.64 to 86.24 GHz. Finally, the gamma-ray active region is located at (1.9 +/- 1.1) pc away from the jet base.



rate research

Read More

Blazars are among the most variable objects in the universe. They feature energetic jets of plasma that launch from the cores of these active galactic nuclei (AGN), triggering activity from radio up to gamma-ray energies. Spatial localization of the region of their MeV/GeV emission is a key question in understanding the blazar phenomenon. The flat spectrum radio quasar (FSRQ) PKS 1502+106 has exhibited extreme and correlated, radio and high-energy activity that triggered intense monitoring by the Fermi-GST AGN Multi-frequency Monitoring Alliance (F-GAMMA) program and the Global Millimeter VLBI Array (GMVA) down to $lambda$3 mm (or 86 GHz), enabling the sharpest view to date towards this extreme object. Here, we report on preliminary results of our study of the gamma-ray loud blazar PKS 1502+106, combining VLBI and single dish data. We deduce the critical aspect angle towards the source to be $theta_{rm c} = 2.6^{circ}$, calculate the apparent and intrinsic opening angles and constrain the distance of the 86 GHz core from the base of the conical jet, directly from mm-VLBI but also through a single dish relative timing analysis. Finally, we conclude that gamma rays from PKS 1502+106 originate from a region between ~1-16 pc away from the base of the hypothesized conical jet, well beyond the bulk of broad-line region (BLR) material of the source.
$^{13}$CO(J=2--1) and C$^{18}$O(J=2--1) observations of the molecular cloud G285.90+4.53 (Cloud~16) in the Carina Flare supershell (GSH287+04-17) with the APEX telescope are presented. With an algorithm DENDROFIND we identify 51 fragments and compute their sizes and masses. We discuss their mass spectrum and interpret it as being the result of the shell fragmentation process described by the pressure assisted gravitational instability - PAGI. We conclude that the explanation of the clump mass function needs a combination of gravity with pressure external to the shell.
The effect of magnetic fields on the frequencies of toroidal oscillations of neutron stars is derived to lowest order. Interpreting the fine structure in the QPO power spectrum of magnetars following giant flares reported by Strohmayer and Watts (2006) to be Zeeman splitting of degenerate toroidal modes, we estimate a crustal magnetic field of order 10^{15} Gauss or more. We suggest that residual m, -m symmetry following such splitting might allow beating of individual frequency components that is slow enough to be observed.
98 - Chris Power 2016
Deep observations of galaxy outskirts reveal faint extended stellar components (ESCs) of streams, shells, and halos, which are ghostly remnants of the tidal disruption of satellite galaxies. We use cosmological galaxy formation simulations in Cold Dark Matter (CDM) and Warm Dark Matter (WDM) models to explore how the dark matter model influences the spatial, kinematic, and orbital properties of ESCs. These reveal that the spherically averaged stellar mass density at large galacto-centric radius can be depressed by up to a factor of 10 in WDM models relative to the CDM model, reflecting the anticipated suppressed abundance of satellite galaxies in WDM models. However, these differences are much smaller in WDM models that are compatible with observational limits, and are comparable in size to the system-to-system variation we find within the CDM model. This suggests that it will be challenging to place limits on dark matter using only the unresolved ESC.
130 - Wolfram Schroers 2005
This review focuses on the current status of lattice calculations of three observables which are both phenomenologically and experimentally relevant and have been scrutinized recently. These three observables are the nucleon electromagnetic form factors, the momentum fraction, <x>, and the nucleon axial coupling, gA.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا