Do you want to publish a course? Click here

Optimization of a relativistic quantum mechanical engine

73   0   0.0 ( 0 )
 Added by Patricio Vargas
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present an optimal analysis for a quantum mechanical engine working between two energy baths within the framework of relativistic quantum mechanics, adopting a first-order correction. This quantum mechanical engine, with the direct energy leakage between the energy baths, consists of two adiabatic and two isoenergetic processes and uses a three-level system of two non-interacting fermions as its working substance. Assuming that the potential wall moves at a finite speed, we derive the expression of power output and, in particular, reproduce the expression for the efficiency at maximum power.

rate research

Read More

The second law of thermodynamics constrains that the efficiency of heat engines, classical or quantum, cannot be greater than the universal Carnot efficiency. We discover another bound for the efficiency of a quantum Otto heat engine consisting of a harmonic oscillator. Dynamics of the engine is governed by the Lindblad equation for the density matrix, which is mapped to the Fokker-Planck equation for the quasi-probability distribution. Applying stochastic thermodynamics to the Fokker-Planck equation system, we obtain the $hbar$-dependent quantum mechanical bound for the efficiency. It turns out that the bound is tighter than the Carnot efficiency. The engine achieves the bound in the low temperature limit where quantum effects dominate. Our work demonstrates that quantum nature could suppress the performance of heat engines in terms of efficiency bound, work and power output.
132 - Tobias Denzler , Eric Lutz 2020
Stability is an important property of small thermal machines with fluctuating power output. We here consider a finite-time quantum Carnot engine based on a degenerate multilevel system and study the influence of its finite Hilbert space structure on its stability. We optimize in particular its relative work fluctuations with respect to level degeneracy and level number. We find that its optimal performance may surpass those of nondegenerate two-level engines or harmonic oscillator motors. Our results show how to realize high-performance, high-stability cyclic quantum heat engines.
In this paper, we analyze the total work extracted and the efficiency of the magnetic Otto cycle in its classic and quant
We derive the general probability distribution function of stochastic work for quantum Otto engines in which both the isochoric and driving processes are irreversible due to finite time duration. The time-dependent power fluctuations, average power, and thermodynamic efficiency are explicitly obtained for a complete cycle operating with an analytically solvable two-level system. We show that, there is a trade-off between efficiency (or power) and power fluctuations.
The phase diagram of water harbours many mysteries: some of the phase boundaries are fuzzy, and the set of known stable phases may not be complete. Starting from liquid water and a comprehensive set of 50 ice structures, we compute the phase diagram at three hybrid density-functional-theory levels of approximation, accounting for thermal and nuclear fluctuations as well as proton disorder. Such calculations are only made tractable because we combine machine-learning methods and advanced free-energy techniques. The computed phase diagram is in qualitative agreement with experiment, particularly at pressures $lesssim$8000 bar, and the discrepancy in chemical potential is comparable with the subtle uncertainties introduced by proton disorder and the spread between the three hybrid functionals. None of the hypothetical ice phases considered is thermodynamically stable in our calculations, suggesting the completeness of the experimental water phase diagram in the region considered. Our work demonstrates the feasibility of predicting the phase diagram of a polymorphic system from first principles and provides a thermodynamic way of testing the limits of quantum-mechanical calculations.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا