Negative Magnetoresistance in Topological Semimetals of Transition-Metal Dipnictides with Nontrivial Z2 Indices


Abstract in English

Negative magnetoresistance (NMR) induced by the Adler-Bell-Jackiw anomaly is regarded as the most prominent quantum signature of Weyl semimetals when electrical field $E$ is collinear with the external magnetic field $B$. In this article, we report universal NMR in nonmagnetic, centrosymmetric transition metal dipnictides MPn$_{2}$ (M=Nb and Ta; Pn=As and Sb), in which the existence of Weyl fermions can be explicitly excluded. Using temperature-dependent magnetoresistance, Hall and thermoelectric coefficients of Nernst and Seebeck effects, we determine that the emergence of the NMR phenomena in MPn$_{2}$ is coincident with a Lifshitz transition, corresponding to the formation of unique electron-hole-electron ($e$-$h$-$e$) pockets along the $I-L-I$ direction. First-principles calculations reveal that, along the $I-L-I$ line, the $d_{xy}$ and $d_{x^{2}-y^{2}}$ orbitals of the transition metal form tilted nodal rings of band crossing well below the Fermi level. Strong spin-orbital coupling gaps all the crossing points and creates the characteristic $e$-$h$-$e$ structure, making MPn$_{2}$ a topological semimetal with $mathbb{Z}_2$ indices of [0;(111)]. By excluding the weak localization contribution of the bulk states, we conclude that the universal NMR in MPn$_{2}$ may have an exotic origin in topological surface states, which appears in pairs with opposite spin-momentum locking on nontrivial surfaces.

Download